Which of the following reactions has a decrease in entropy
a.
b.
c.
d.
(a)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
The reactant is dry ice that is in solid sate while the product represents gaseous
(b)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases, this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
Here the phase transition does not occur however the number of atoms is more in the product side so there is more randomness in the product side so
(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
For phase transition such as solid to gas or liquid to gas the entropy change is positive in the direction that leads to more randomness. The gases are associated with the highest degree of randomness as they have molecules far apart. The least randomness is found in a solid-state that has a closely packed structure of atoms. Liquids have randomness intermediate to its solid-gas counterparts.
Mathematically, when randomness increases this physically means that
Answer to Problem 18.1P
No,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that the reactant includes only they solid
(c)
Interpretation:
Whether the reaction given below represents a decrease in entropy in the forward direction should be determined.
Concept introduction:
Dissolution is phenomenon where the ionic lattice is disrupted and the ion gets solvated. Usually such solvation results in increases in randomness and thus,
Answer to Problem 18.1P
Yes,
Explanation of Solution
Given information:
The reaction is given as follows:
It can be observed that reactants include aqueous ions that are hydrated and are in a more disordered state the solid
Want to see more full solutions like this?
Chapter 18 Solutions
CHEMISTRY-MASTERINGCHEMISTRY W/ETEXT
- For each process, predict whether entropy increases or decreases, and explain how you arrived at your prediction. 2 CO2(g) → 2 CO(g) + O2(g) NaCl(s) → NaCl(aq) MgCO3(s) → MgO(s) + CO2(g)arrow_forwardA key component in many chemical engineering designs is the separation of mixtures of chemicals. (a) What happens to the entropy of the system when a chemical mixture is separated? (b) Are designs for chemical separation more likely to rely on spontaneous or nonspontaneous processes?arrow_forwardSolid NH4NO3 is placed in a beaker containing water at 25 C. When the solid has completely dissolved, the temperature of the solution is 23.5 C. (a) Was the process exothermic or endothermic? (b) Was the process spontaneous? (c) Did the entropy of the system increase? (d) Did the entropy of the universe increase?arrow_forward
- For each process, tell whether the entropy change of the system is positive or negative, (a) A glassblower heats glass (the system) to its softening temperature, (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forwardThe standard molar entropy of methanol vapor, CH3OH(g), is 239.8 J K1 mol-1. (a) Calculate the entropy change for the vaporization of 1 mol methanol (use data from Table 16.1 or Appendix J). (b) Calculate the enthalpy of vaporization of methanol, assuming that rS doesnt depend on temperature and taking the boiling point of methanol to be 64.6C.arrow_forwardWhat is the third law of thermodynamics? What are standard entropy values, S, and how are these S values (listed in Appendix 4) used to calculate S for a reaction? How would you use Hesss law to calculate S for a reaction? What does the superscript indicate? Predicting the sign of S for a reaction is an important skill to master. For a gas-phase reaction, what do you concentrate on to predict the sign of S? For a phase change, what do you concentrate on to predict the sign of S? That is, how are Ssolid, Sliquid, and Sgas related to one another? When a solute dissolves in water, what is usually the sign of S for this process?arrow_forward
- Yeast can produce ethanol by the fermentation of glucose (C6H12O6), which is the basis for the production of most alcoholic beverages. C6H12O6(aq) 2 C2H5OH() + 2 CO2(g) Calculate rH, rS, and rG for the reaction at 25 C. Is the reaction product- or reactant-favored at equilibrium? In addition to the thermodynamic values in Appendix L, you will need the following data for C6H12O6(aq): fH = 1260.0 kl/mol; S = 289 J/K mol; and fG = 918.8 kl/mol.arrow_forwardFor each process, tell whether the entropy change of the system is positive or negative. (a) A glassblower heats glass (the system) to its softening temperature. (b) A teaspoon of sugar dissolves in a cup of coffee. (The system consists of both sugar and coffee.) (c) Calcium carbonate precipitates out of water in a cave to form stalactites and stalagmites. (Consider only the calcium carbonate to be the system.)arrow_forwardIodine, I2, dissolves readily in carbon tetrachloride. For this process, H = 0 kJ/mol. I2(s) I2 (in CCl4 solution) What is the sign of rG? Is the dissolving process entropy-driven or enthalpy-driven? Explain briefly.arrow_forward
- At room temperature, the entropy of the halogens increases from I2 to Br2 to Cl2. Explain.arrow_forwardChemists and engineers who design nuclear power plants have to worry about high-temperature reactions because it is possible for water to decompose. (a) Under what conditions does this reaction occur spontaneously? 2H2O(g) 2H2(g) + O2(g) (b) Under conditions where the decomposition of water is spontaneous, do nuclear engineers have to worry about an oxygen/hydrogen explosion? Justify your answer.arrow_forwardThe molecular scale pictures below show snapshots of a strong acid at three different instants after it is added to water. Place the three pictures in the correct order so that they show the progress of the spontaneous process that takes place as the acid dissolves in the water. Explain your answer in terms of entropyarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning