![Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card](https://www.bartleby.com/isbn_cover_images/9781305717534/9781305717534_largeCoverImage.gif)
Concept explainers
(a)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 18.163EP
In the polysaccharides amylose, cellulose, chitin and heparin, all the glycosidic linkages are same.
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. Theglycosidic linkage present incellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylose, chitin, cellulose and heparin have all the same glycosidic linkages.
(b)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 18.163EP
In the polysaccharides amylopectin and glycogen, some but not all of the linkages are
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylopectin and glycogen have some but not all the linkages as
(c)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 18.163EP
In the polysaccharide hyaluronic acid, both
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharidehyaluronic acid have both
(d)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(d)
![Check Mark](/static/check-mark.png)
Answer to Problem 18.163EP
In the polysaccharides heparin and amylose, all the glycosidic linkages are
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylose and heparin have all the
Want to see more full solutions like this?
Chapter 18 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- ASP.....arrow_forwardQuestion 7 (10 points) Identify the carboxylic acid present in each of the following items and draw their structures: Food Vinegar Oranges Yogurt Sour Milk Pickles Acid Structure Paragraph ✓ BI UAE 0118 + v Task: 1. Identify the carboxylic acid 2. Provide Name 3. Draw structure 4. Take a picture of your table and insert Add a File Record Audio Record Video 11.arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 IZ IN Molecule 4 Molecule 5 ZI none of the above ☐ Molecule 3 Х IN www Molecule 6 NH Garrow_forward
- Highlight each chiral center in the following molecule. If there are none, then check the box under the drawing area. There are no chiral centers. Cl Cl Highlightarrow_forwardA student proposes the following two-step synthesis of an ether from an alcohol A: 1. strong base A 2. R Is the student's proposed synthesis likely to work? If you said the proposed synthesis would work, enter the chemical formula or common abbreviation for an appropriate strong base to use in Step 1: If you said the synthesis would work, draw the structure of an alcohol A, and the structure of the additional reagent R needed in Step 2, in the drawing area below. If there's more than one reasonable choice for a good reaction yield, you can draw any of them. ☐ Click and drag to start drawing a structure. Yes No ロ→ロ 0|0 G Х D : ☐ பarrow_forwardटे Predict the major products of this organic reaction. Be sure to use wedge and dash bonds when necessary, for example to distinguish between different major products. ☐ ☐ : ☐ + NaOH HO 2 Click and drag to start drawing a structure.arrow_forward
- Shown below are five NMR spectra for five different C6H10O2 compounds. For each spectrum, draw the structure of the compound, and assign the spectrum by labeling H's in your structure (or in a second drawing of the structure) with the chemical shifts of the corresponding signals (which can be estimated to nearest 0.1 ppm). IR information is also provided. As a reminder, a peak near 1700 cm-1 is consistent with the presence of a carbonyl (C=O), and a peak near 3300 cm-1 is consistent with the presence of an O–H. Extra information: For C6H10O2 , there must be either 2 double bonds, or 1 triple bond, or two rings to account for the unsaturation. There is no two rings for this problem. A strong band was observed in the IR at 1717 cm-1arrow_forwardPredict the major products of the organic reaction below. : ☐ + Х ك OH 1. NaH 2. CH₂Br Click and drag to start drawing a structure.arrow_forwardNG NC 15Show all the steps you would use to synthesize the following products shown below using benzene and any organic reagent 4 carbons or less as your starting material in addition to any inorganic reagents that you have learned. NO 2 NC SO3H NO2 OHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285869759/9781285869759_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960060/9781305960060_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084476/9781305084476_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285853918/9781285853918_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305081079/9781305081079_smallCoverImage.gif)