(a)
To determine: The atom of urea in which the isotope will be found.
Introduction:
The breakdown of nitrogenous compounds produces crystalline compounds which is colorless and is known as urea. The ammonia is the most common form of nitrogenous waste. It is mostly found in mammals’ urine.
(b)
To determine: The atom of succinate in which the isotope will be found.
Introduction:
The
(c)
To determine: The atom of arginine in which the isotope will be found.
Introduction:
Arginine is one of the most essential amino acid. The person who is on diet lacks arginine in the urea cycle, so there will be no conversion of ammonia to urea. Arginine plays an important role in urea formation.
(d)
To determine: The atom of citrulline in which the isotope will be found.
Introduction:
Citrulline is the amino acid which aids in the flow of blood in the body. It is made in the body. Citrulline maintains the health of heart and body by improving the flow of blood.
(e)
To determine: The atom of ornithine in which the isotope will be found.
Introduction:
Ornithine is one of the amino acid which can replace arginine because ornithine is proteogenic and it can easily be converted into arginine through urea cycle. This conversion removes the toxicity which is due to the accumulation in the body.
(f)
To determine: The atom of aspartate in which the isotope will be found.
Introduction:
Aspartate is the amino acid which is salt or ester of aspartic acid. Similarly, succinate is salt or ester of succinic acid. It plays a vital role in the cycle of urea.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Lehninger Principles of Biochemistry
- Biochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forwardBiochemistry What is the importance of the glucose-alanine cycle?arrow_forward
- Biochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forwardBiochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forward
- Biochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forwardBiochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forward
- Draw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forwardIdentify the type of bond in the following disaccharides. Number your carbons to show work. Explain your answer thoroughly. Draw the number of carbons also.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON