
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
9th Edition
ISBN: 9780134544847
Author: Tony Gaddis
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 18, Problem 15PC
Program Plan Intro
Pop( ) and push( ) Member functions
Program Plan:
“IntList.h”:
- Include the required specifications into the program.
- Define a class named “IntList”.
- Declare the member variables “value” and “*next” in structure named “ListNode”.
- Declare a variable named “size” in type of integer and initialize the variable as “0” in the constructor.
- Define the constructor, destructor, and member functions in the class.
- Declare the functions prototypes of “pop_back()”, “pop_front()”, “push_back()”, and “push_front()”.
“IntList.cpp”:
- Include the required header files into the program.
- Define a function named “appendNode()” to insert the node at end of the list.
- Declare the structure pointer variables “newNode” and “dataPtr” for the structure named “ListNode”.
- Assign the “newNode” value into received variable “num” and assign the “newNode” address into null.
- Using “if…else” condition check whether the list is empty or not, if the “head” is empty then make a new node into “head” pointer. Otherwise, make a loop to find last node in the loop.
- Assign the value of “dataPtr” into the variable “newNode”.
- Increment the value of the variable “size” by “1”.
- Define a function named “display()” to print the values in the list.
- Declare the structure pointer “dataPtr” for the structure named “ListNode”.
- Initialize the variable “dataPtr” with the “head” pointer.
- Make a loop “while” to display the values of the list.
- Define a function named “insertNode()” to insert a value into the list.
- Declare the structure pointer variables “newNode”, “dataPtr”, and “prev” for the structure named “ListNode”.
- Make a “newNode” value into the received variable value “num”.
- Use “if…else” condition to check whether the list is empty or not.
- If the list is empty then initialize “head” pointer with the value of “newNode” variable.
- Otherwise, make a “while” loop to test whether the “num” value is less than the list values or not.
- Use “if…else” condition to initialize the value into list.
- Increment the value of the variable “size” by “1”.
- Define a function named “deleteNode()” to delete a value from the list.
- Declare the structure pointer variables “dataPtr”, and “prev” for the structure named “ListNode”.
- Use “if…else” condition to check whether the “head” value is equal to “num” or not.
- Initialize the variable “dataPtr” with the value of the variable “head”.
- Remove the value using “delete” operator and reassign the “head” value into the “dataPtr”.
- If the “num” value not equal to the “head” value, then define the “while” loop to assign the “dataPtr” into “prev”.
- Use “if” condition to delete the “prev” pointer.
- Decrement the value of the variable “size” by “1”.
- Define the function named “getSize()” to return the current value of the “size”.
- Define the destructor to destroy the list values from the memory.
- Declare the structure pointer variables “dataPtr”, and “nextNode” for the structure named “ListNode”.
- Initialize the “head” value into the “dataPtr”.
- Define a “while” loop to make the links of node into “nextNode” and remove the node using “delete” operator.
- Define the function named “pop_back()” to insert a value at end of the list.
- Declare the pointer variables for structure named “ListNode” and assign null to the “previousNode”.
- Using “if” condition check whether the list is empty or not.
- If the list is empty then throw a message on the screen.
- Using “while” loop to traverse the list.
- Initialize the variable “previousNode” with the value of the variable “node”.
- Assign null to the address of “previousNode”.
- Delete the value of “node” using “delete” operator.
- Return the value of “temp” to the calling function.
- Define the function named “pop_front()” to insert a value at front of the list.
- Declare the pointer variable “node” for a structure “ListNode”.
- Using “if” condition check whether the list is empty or not.
- If the list is empty then throw a message on the screen.
- Using “while” loop to traverse the list.
- Initialize the variable “temp” with the value of the variable “head”.
- Assign null to the address of “head”.
- Delete the value of “node” using “delete” operator.
- Return the value of “temp” to the calling function.
- Define the function named “push_back()” to insert the value at end of the list.
- Make a call to the “appendNode()” function to insert the received value of variable “value” at end of the list.
- Define the function named “push_front()” to insert the value at front of the list.
- Declare a pointer variable “newNode” for the structure.
- Initialize the variable “newNode” with the value of received variable “value”.
- Using “if…else” condition check the list is empty.
- If the list is empty then add a value into “head” pointer.
- Otherwise, add a value into address of “newNode”.
- Increment the “size” variable by “1”.
“main.cpp”:
- Include the required header files into the program.
- Declare an object named “obj” for the class “IntList”.
- Make a call to functions for append and display operations.
- Make a call to function “pop_back()”, “pop_front()”, “push_front()”, and “push_back()” and display the values using a function “display()”.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Please include comments and docs comments on the program.
The two other classes are Attraction and Entertainment.
Object-Oriented Programming
In this
separate files.
ent, you'll need to build and run a small Zoo in Lennoxville. All classes must be created in
Animal (5)
First, start by building a class that describes an Animal at a Zoo. It should have one private instance
variable for the name of the animal, and one for its hunger status (fed or hungry).
Add methods for setting and getting the hunger satus variable, along with a getter for the name. Consider
how these should be named for code clarity. For instance, using a method called hungry () to make the
animal hungry could be used as a setter for the hunger field. The same logic could be applied to when it's
being fed:
public void feed () {
this.fed = true;
Furthermore, the getter for the fed variable could be named is Fed as it is more descriptive about what it
answers when compared to get Fed. Keep this technique in mind for future class designs.
Zoo (10)
Now we have the animals designed and ready for building a little Zoo!
Build a class…
1.[30 pts] Answer the following questions:
a. [10 pts] Write a Boolean equation in sum-of-products canonical form for the truth table
shown below:
A
B
C
Y
0
0
0
1
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
1
1
0
1
0
1
1
0
1
1
1
1
0
a. [10 pts] Minimize the Boolean equation you obtained in (a).
b. [10 pts] Implement, using Logisim, the simplified logic circuit. Include an image of
the circuit in your report.
2. [20 pts] Student A B will enjoy his picnic on sunny days that have no ants. He
will also enjoy his picnic any day he sees a hummingbird, as well as on days where
there are ants and ladybugs.
a. Write a Boolean equation for his enjoyment (E) in terms of sun (S), ants
(A), hummingbirds (H), and ladybugs (L).
b. Implement in Logisim, the logic circuit of E function. Use the Circuit Analysis tool in
Logisim to view the expression, include an image of the expression generated by Logisim
in your report.
3.[20 pts] Find the minimum equivalent circuit for the one shown below (show your work):
DAB
C…
Chapter 18 Solutions
Starting Out with C++ from Control Structures to Objects Plus MyLab Programming with Pearson eText -- Access Card Package (9th Edition)
Ch. 18.1 - Prob. 18.1CPCh. 18.1 - Prob. 18.2CPCh. 18.1 - Prob. 18.3CPCh. 18.1 - Prob. 18.4CPCh. 18.2 - Prob. 18.5CPCh. 18.2 - Prob. 18.6CPCh. 18.2 - Prob. 18.7CPCh. 18.2 - Prob. 18.8CPCh. 18.2 - Prob. 18.9CPCh. 18.2 - Prob. 18.10CP
Ch. 18 - Prob. 1RQECh. 18 - Prob. 2RQECh. 18 - Prob. 3RQECh. 18 - Prob. 4RQECh. 18 - Prob. 5RQECh. 18 - Prob. 6RQECh. 18 - Prob. 7RQECh. 18 - Prob. 8RQECh. 18 - Prob. 9RQECh. 18 - Prob. 10RQECh. 18 - Prob. 11RQECh. 18 - Prob. 12RQECh. 18 - Prob. 13RQECh. 18 - Prob. 14RQECh. 18 - Prob. 15RQECh. 18 - Prob. 16RQECh. 18 - Prob. 17RQECh. 18 - Prob. 18RQECh. 18 - Prob. 19RQECh. 18 - Prob. 20RQECh. 18 - Prob. 21RQECh. 18 - Prob. 22RQECh. 18 - Prob. 23RQECh. 18 - Prob. 24RQECh. 18 - Prob. 25RQECh. 18 - T F The programmer must know in advance how many...Ch. 18 - T F It is not necessary for each node in a linked...Ch. 18 - Prob. 28RQECh. 18 - Prob. 29RQECh. 18 - Prob. 30RQECh. 18 - Prob. 31RQECh. 18 - Prob. 32RQECh. 18 - Prob. 33RQECh. 18 - Prob. 34RQECh. 18 - Prob. 35RQECh. 18 - Prob. 1PCCh. 18 - Prob. 2PCCh. 18 - Prob. 3PCCh. 18 - Prob. 4PCCh. 18 - Prob. 5PCCh. 18 - Prob. 6PCCh. 18 - Prob. 7PCCh. 18 - List Template Create a list class template based...Ch. 18 - Prob. 9PCCh. 18 - Prob. 10PCCh. 18 - Prob. 11PCCh. 18 - Prob. 12PCCh. 18 - Prob. 13PCCh. 18 - Prob. 14PCCh. 18 - Prob. 15PC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- When using functions in python, it allows us tto create procedural abstractioons in our programs. What are 5 major benefits of using a procedural abstraction in python?arrow_forwardFind the error, assume data is a string and all variables have been declared. for ch in data: if ch.isupper: num_upper = num_upper + 1 if ch.islower: num_lower = num_lower + 1 if ch.isdigit: num_digits = num_digits + 1 if ch.isspace: num_space = num_space + 1arrow_forwardFind the Error: date_string = input('Enter a date in the format mm/dd/yyyy: ') date_list = date_string.split('-') month_num = int(date_list[0]) day = date_list[1] year = date_list[2] month_name = month_list[month_num - 1] long_date = month_name + ' ' + day + ', ' + year print(long_date)arrow_forward
- Find the Error: full_name = input ('Enter your full name: ') name = split(full_name) for string in name: print(string[0].upper(), sep='', end='') print('.', sep=' ', end='')arrow_forwardPlease show the code for the Tikz figure of the complex plane and the curve C. Also, mark all singularities of the integrand.arrow_forward11. Go to the Webinars worksheet. DeShawn wants to determine the number of webinars the company can hold on Tuesdays and Thursdays to make the highest weekly profit without interfering with consultations, which are also scheduled for Tuesdays and Thursdays and use the same resources. Use Solver to find this information as follows: a. Use Total weekly profit as the objective cell in the Solver model, with the goal of determining the maximum value for that cell. b. Use the number of Tuesday and Thursday sessions for the five programs as the changing variable cells. c. Determine and enter the constraints based on the information provided in Table 3. d. Use Simplex LP as the solving method to find a global optimal solution. e. Save the Solver model below the Maximum weekly profit model label. f. Solve the model, keeping the Solver solution. Table 3: Solver Constraints Constraint Cell or Range Each webinar is scheduled at least once on Tuesday and once on Thursday B4:F5 Each Tuesday and…arrow_forward
- Go to the Webinars DeShawn wants to determine the number of webinars the company can hold on Tuesdays and Thursdays to make the highest weekly profit without interfering with consultations, which are also scheduled for Tuesdays and Thursdays and use the same resources. Use Solver to find this information as follows: Use Total weekly profit as the objective cell in the Solver model, with the goal of determining the maximum value for that cell. Use the number of Tuesday and Thursday sessions for the five programs as the changing variable cells. Determine and enter the constraints based on the information provided in Table 3. Use Simplex LP as the solving method to find a global optimal solution. Save the Solver model below the Maximum weekly profit model label. Solve the model, keeping the Solver solution. Table 3: Solver Constraints Constraint Cell or Range Each webinar is scheduled at least once on Tuesday and once on Thursday B4:F5 Each Tuesday and Thursday…arrow_forwardI want to ask someone who has experiences in writing physics based simulation software. For context I am building a game engine, and want to implement physics simulation. There are a few approaches that I managed to find, but would like to know what are other approaches to doing physics simulation entry points from scenes, would you be able to visually draw me a few approaches (like 3 approaces)? When I say entry point to the actual physics simulation. An example of this is when the user presses the play button in the editor, it starts and initiates the physics system. Applying all of the global physics settings parameters that gets applied to that scene. Here is the use-case, I am looking for. If you have two scenes, and select scene 1. You press the play button. The physics simulation starts. When that physics simulation starts, you are also having to update the physics through some physics dedicated delta time because physics needs to happen faster update frequency. To elaborate,…arrow_forwardI want to ask someone who has experiences in writing physics based simulation software. For context I am building a game engine, and want to implement physics simulation. There are a few approaches that I managed to find, but would like to know what are other approaches to doing physics simulation entry points from scenes, would you be able to visually draw me a few approaches (like 3 approaces)?When I say entry point to the actual physics simulation. An example of this is when the user presses the play button in the editor, it starts and initiates the physics system. Applying all of the global physics settings parameters that gets applied to that scene.Here is the use-case, I am looking for. If you have two scenes, and select scene 1. You press the play button. The physics simulation starts. When that physics simulation starts, you are also having to update the physics through some physics dedicated delta time because physics needs to happen faster update frequency.To elaborate, what…arrow_forward
- Male comedians were typically the main/dominant star of television sitcoms made during the FCC licensing freeze. Question 19 options: True False In the episode of The Honeymooners that you watched this week, why did Alice decide to get a job outside of the home? Question 1 options: to earn enough money to buy a mink coat to have something to do while the kids were at school to pay the bills after her husband got laid offarrow_forwardAfter the FCC licensing freeze was lifted, sitcoms featuring urban settings and working class characters became far less common. Question 14 options: True Falsearrow_forwardsolve this questions for me .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- C++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage LearningC++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrSystems ArchitectureComputer ScienceISBN:9781305080195Author:Stephen D. BurdPublisher:Cengage Learning
- Programming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageEBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTNew Perspectives on HTML5, CSS3, and JavaScriptComputer ScienceISBN:9781305503922Author:Patrick M. CareyPublisher:Cengage Learning

C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning

C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr

Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage

EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT

New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning