Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 41. T( x , y , z ) = 100 + x + 2 y + z ; D = {( x , y , z ): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Heat transfer Fourier’s Law of heat transfer (or heat conduction) states that the heat flow vector F at a point is proportional to the negative gradient of the temperature; that is, F = – k ▿ T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s- K . A temperature function for a region D is given. Find the net outward heat flux ∬ S F ⋅ n d S = − k ∬ S ∇ T ⋅ n d S across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1 . 41. T( x , y , z ) = 100 + x + 2 y + z ; D = {( x , y , z ): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Solution Summary: The author explains that the net outward heat flux is 0. The region of application of the Divergence theorem in temperature field is given below.
Heat transferFourier’s Law of heat transfer (or heat conduction) states that the heat flow vectorFat a point is proportional to the negative gradient of the temperature; that is,F = –k▿T. which means that heat energy flows from hot regions to cold regions. The constant k > 0 is called the conductivity, which has metric units of J/m-s-K. A temperature function for a region D is given. Find the net outward heat flux
∬
S
F
⋅
n
d
S
=
−
k
∬
S
∇
T
⋅
n
d
S
across the boundary S of D. In some cases, it may be easier to use the Divergence Theorem and evaluate a triple integral. Assume that k = 1.
41. T(x, y, z) = 100 + x + 2y + z;
D = {(x, y, z): 0 ≤ x ≤ 1, 0 ≤ 1, 0 ≤ z ≤ 1}
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
Elementary Statistics: Picturing the World (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.