Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 66. The constant-density hemispherical shall x 2 + y 2 + z 2 = a 2 , z ≥ 0
Mass and center of mass Let S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes ( see Section 13.6 ) are M y z = ∬ S x ρ ( x , y , z ) d S , M x z = ∬ S y ρ ( x , y , z ) d S , and M x y = ∬ S z ρ ( x , y , z ) d S . The coordinates of the center of mass of the shell are x ¯ = M y z m , y ¯ = M x z m , z ¯ = M x y m , where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible . 66. The constant-density hemispherical shall x 2 + y 2 + z 2 = a 2 , z ≥ 0
Mass and center of massLet S be a surface that represents a thin shell with density ρ. The moments about the coordinate planes (see Section 13.6) are
M
y
z
=
∬
S
x
ρ
(
x
,
y
,
z
)
d
S
,
M
x
z
=
∬
S
y
ρ
(
x
,
y
,
z
)
d
S
, and
M
x
y
=
∬
S
z
ρ
(
x
,
y
,
z
)
d
S
. The coordinates of the center of mass of the shell are
x
¯
=
M
y
z
m
,
y
¯
=
M
x
z
m
,
z
¯
=
M
x
y
m
, where m is the mass of the shell. Find the mass and center of mass of the following shells. Use symmetry whenever possible.
66. The constant-density hemispherical shall
x
2
+
y
2
+
z
2
=
a
2
,
z
≥
0
find the zeros of the function algebraically:
f(x) = 9x2 - 3x - 2
Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach
one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck
starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a
horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate
a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The
angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude
and its direction angle from the positive x-axis.
119 lb
20.2°
377 lb
Chapter 17 Solutions
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.