What’s wrong? Consider the rotation field F = ( − y , x ) x 2 + y 2 . a. Verify that the two-dimensional curl of F is zero, which suggests that the double integral in the circulation form of Green’s Theorem is zero. b. Use a line integral to verify that the circulation on the unit circle of the vector field is 2 π . c. Explain why the results of parts (a) and (b) do not agree.
What’s wrong? Consider the rotation field F = ( − y , x ) x 2 + y 2 . a. Verify that the two-dimensional curl of F is zero, which suggests that the double integral in the circulation form of Green’s Theorem is zero. b. Use a line integral to verify that the circulation on the unit circle of the vector field is 2 π . c. Explain why the results of parts (a) and (b) do not agree.
Solution Summary: The author explains that the two dimensional curl of the vector field is zero.
What’s wrong? Consider the rotation field
F
=
(
−
y
,
x
)
x
2
+
y
2
.
a. Verify that the two-dimensional curl of F is zero, which suggests that the double integral in the circulation form of Green’s Theorem is zero.
b. Use a line integral to verify that the circulation on the unit circle of the vector field is 2π.
c. Explain why the results of parts (a) and (b) do not agree.
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
a
->
f(x) = f(x) = [x] show that whether f is continuous function or not(by using theorem)
Muslim_maths
Use Green's Theorem to evaluate F. dr, where
F = (√+4y, 2x + √√)
and C consists of the arc of the curve y = 4x - x² from (0,0) to (4,0) and the line segment from (4,0) to
(0,0).
Evaluate
F. dr where F(x, y, z) = (2yz cos(xyz), 2xzcos(xyz), 2xy cos(xyz)) and C is the line
π 1
1
segment starting at the point (8,
'
and ending at the point (3,
2
3'6
Chapter 17 Solutions
Calculus: Early Transcendentals, Books a la Carte, and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.