EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17.7, Problem 163FEP
Combustion gases with k = 1.33 enter a converging nozzle at stagnation temperature and pressure of 350°C and 400 kPa and are discharged into the atmospheric air at 20°C and 100 kPa. The lowest pressure that will occur within the nozzle is
- (a) 13 kPa
- (b) 100 kPa
- (c) 216 kPa
- (d) 290 kPa
- (e) 315 kPa
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2- Products of combustion enter a gas turbine with a stagnation pressure of 0.75
MPa and a stagnation temperature of 690 °C, and they expand to a stagnation
pressure of 100 kPa. Taking cp = 1.157 kJ/kg.K, k = 1.33 and R = 0.287 kJ/kg-K for the
products of combustion, and assuming the expansion process to be isentropic,
determine the power output of the turbine per unit mass flow.
QUESTION 6
Air enters a diffuser with an averaged velocity of 360 m/s at a
temperature of 340 kPa and 420 K and leaves at a stagnation pressure of 300 kPa with an
averaged velocity of 120 m/s and a static pressure of 285 kPa. Determine,
stagnation pressure and
(i) the static pressure and Mach number of the air at inlet;
(ii) the diffuser efficiency
(iii the Mach number at exit and the overall entropy increase
Consider a converging nozzle and a converging– diverging nozzle having the same throat areas. For the same inlet conditions, how would you compare the mass flow rates through these two nozzles?
Chapter 17 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 7PCh. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - Prob. 27PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 30PCh. 17.7 - Prob. 31PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Prob. 38PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Prob. 44PCh. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 48PCh. 17.7 - Prob. 49PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 55PCh. 17.7 - Prob. 56PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 62PCh. 17.7 - Prob. 63PCh. 17.7 - Prob. 64PCh. 17.7 - Prob. 65PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 67PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Prob. 80PCh. 17.7 - Prob. 81PCh. 17.7 - Prob. 82PCh. 17.7 - Prob. 83PCh. 17.7 - Prob. 84PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 89PCh. 17.7 - Prob. 90PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 92PCh. 17.7 - Prob. 93PCh. 17.7 - Prob. 96PCh. 17.7 - Prob. 97PCh. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 103PCh. 17.7 - Prob. 104PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Prob. 108PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113PCh. 17.7 - Prob. 114PCh. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Prob. 116PCh. 17.7 - Prob. 117PCh. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 119PCh. 17.7 - Prob. 120RPCh. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 127RPCh. 17.7 - Prob. 128RPCh. 17.7 -
17–129 Helium enters a nozzle at 0.6 MPa, 560...Ch. 17.7 - Prob. 130RPCh. 17.7 - Prob. 132RPCh. 17.7 - Prob. 133RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 136RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 -
17–140 Helium expands in a nozzle from 1 MPa,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 145RPCh. 17.7 - Prob. 146RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 151RPCh. 17.7 - Prob. 154FEPCh. 17.7 - Prob. 155FEPCh. 17.7 - Prob. 156FEPCh. 17.7 - Prob. 157FEPCh. 17.7 - Prob. 158FEPCh. 17.7 - Prob. 159FEPCh. 17.7 - Prob. 160FEPCh. 17.7 - Prob. 161FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An ideal gas enters a turbine with a velocity of 40 m/s through an inlet pipe with a diameter of 160 mm. The ideal gas enters the turbine at a temperature of 660°C and a pressure of 800 kPa. The ideal gas leaves the turbine with a velocity of 150 m/s through an outlet pipe with a diameter of 100 mm. The power output from the turbine is 350 kW. The heat lost from the turbine to the surrounding amounts to 6% of the power output from the turbine. Changes in kinetic energy and potential energy can be neglected. For the ideal gas, use R = 0.287 kJ/kg.K and c, = 1.11 kJ/kg.K| i) Sketch the system/control volume for the above problem Show the boundary/control surface and energy interactions clearly in the sketch. 11) Determine the mass flow rate of the ideal gas, kg/s. i11) Determine the temperature of the ideal gas leaving the turbine, °C. iv) Determine the pressure of the ideal gas leaving the turbine, kPa. v) Suggest one way to increase the power output from the turbine.arrow_forwardA combustion chamber consists of tubular combustors of 15-cm diameter. Compressed air enters the tubes at 550 K, 480 kPa, and 80 m/s. Fuel with a heating value of 42,000 kJ/kg is injected into the air and is burned with an air–fuel mass ratio of 40. Approximating combustion as a heat transfer process to air, determine the temperature, pressure, velocity, and Mach number at the exit of the combustion chamber.arrow_forwardArgon gas is approaching a converging–diverging nozzle with a low velocity at 20°C and 150 kPa, and it leaves the nozzle at a supersonic velocity. If the cross-sectional area of the throat is 0.015 m2, the mass flow rate of argon through the nozzle is (a) 0.47 kg/s (b) 1.7 kg/s (c) 2.6 kg/s (d ) 6.6 kg/s (e) 10.2 kg/sarrow_forward
- 4-Steam flows through a device with a stagnation pressure of 120 psia, a stagnation temperature of 7008F, and a velocity of 900 ft/s. Assuming ideal- gas behavior, determine the static pressure and temperature of the steam at this state.arrow_forwardi need the answer quicklyarrow_forward(c) An ideal gas enters a turbine with a velocity of 40 m/s through an inlet pipe with a diameter of 160 mm. The ideal gas leaves the turbine at a temperature of 527°C and a pressure of 500 kPa. The ideal gas leaves the turbine with a velocity of 150 m/s through an outlet pipe with a diameter of 100 mm. The power output from the turbine is 350 kW. The heat lost from the turbine to the surrounding amounts to 6% of the power output from the turbine. Changes in kinetic energy and potential energy can be neglected. For the ideal gas, use R = 0.287 kJ/kg.K and c, = 1.11 kJ/kg.K. i) Sketch the system/control volume for the above problem. Show the boundary/control surface and energy interactions clearly in the sketch. ii) Determine the mass flow rate of the ideal gas, kg/s. iii) Determine the temperature of the ideal gas entering the turbine, °C. iv) Determine the pressure of the ideal gas entering the turbine, kPa. v) Suggest one way to increase the power output from the turbine.arrow_forward
- 3. A converging nozzle is fed with air from a large reservoir where the temperature and pressure are 400 K and 170 kPa, respectively. The nozzle has an exit cross - sectional area of 0.001 m2 and discharges into the atmosphere with a pressure of 100 kPa. The flow is isentropic throughout the nozzle. Determine the pressure, Mach number, temperature and velocity at the exit plane, and also find the mass flow rate. (Ans: 100 kPa, 0.9, 344.8 K, 334.8 m - s1, 0.3388 kg - s').arrow_forward3. A converging-diverging nozzle is designed to operate isentropically with air at an exit Mach number of 1.75. The nozzle exit area is 0.12 m². For a constant chamber pressure and temperature of 5 MPa and 200°C, respectively, calculate the following: (a) Maximum back pressure to choke nozzle (b) Flow rate in kilograms per second for a back pressure of 101 kPa (c) Flow rate for a back pressure of 1 MPa.arrow_forwardCarbon dioxide enters a converging–diverging nozzle at 60 m/s, 310°C, and 300 kPa, and it leaves the nozzle at a supersonic velocity. The velocity of carbon dioxide at the throat of the nozzle is (a) 125 m/s (b) 225 m/s (c) 312 m/s (d ) 353 m/s (e) 377 m/sarrow_forward
- Air flows steadily through a varying cross-sectional area duct such as a nozzle at a mass flow rate of 10 lb/s. The air enters the duct at a pressure of 200 lb/in2 and 445°F with a low velocity, and it expands in the nozzle to an exit pressure of 30 lb/in2. The duct is designed so that the flow can be approximated as isentropic. Determine the density, velocity, flow area, and Mach number at each location along the duct that corresponds to an overall pressure drop of 30 lb/in2.arrow_forwardA converging–diverging nozzle receives air from a tank at 100 psia and 600°R. The pressure is 28.0 psia immediately preceding a plane shock that is located in the di- verging section. The Mach number at the exit is 0.5 and the flow rate is 10 lbm/sec. Determine: (a) The throat area. (b) The area at which the shock is located. (c) The outlet pressure required to operate the nozzle in the manner described above. (d) The outlet area. (e) The design Mach number.arrow_forwardAir flows through a long, isentropic nozzle. The temperature and pressure at the * reservoir are 1000K and 20 atm, respectively. If the Mach number at the entrance is 0.2, determine the gas velocity at the entrance. 634 m/s 127 m/s 478 m/s 254 m/s For a large centrifugal pump, the required net positive suction head is typically around 5 ft 2 ft 15 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License