
a)
The exit velocity, mass flow rate, and exit Mach number if the nozzle is isentropic.
a)

Answer to Problem 117P
The exit velocity of the stream is
The mass flow rate is
The Mach number at the exit of nozzle is
Explanation of Solution
For isentropic,
The flow of steam through the nozzle is steady and isentropic.
Write the expression of energy balance equation for the converging-diverging nozzle.
Inlet velocity is equal to zero
Here, enthalpy at exit is
Write the expression to calculate the exit area of the nozzle.
Here, mass flow rate of steam is
Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.
Here, pressure drop in the nozzle is
Write the expression to calculate the Mach number for the steam at the exit of nozzle.
Here, Mach number of the steam at the exit is
Conclusion:
Refer Table A-6, “Superheated water”, obtain the values of
Here, at superheated condition the entropy of saturated steam is
Refer Table A-6, “Superheated water”, obtain the isentropic final enthalpy value
The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy
at the inlet
Substitute
Thus, the exit velocity of the stream is
Substitute
Thus, the mass flow rate is
Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam at the entropy of
Substitute
Substitute
Hence, the Mach number at the exit of nozzle is
b)
The exit velocity, mass flow rate, and exit Mach number if the has an efficiency of 94 percent.
b)

Answer to Problem 117P
The exit velocity of the stream is
The mass flow rate is
The Mach number at the exit of nozzle is
Explanation of Solution
Nozzle has an efficiency of 90 percent:
Write the expression for the efficiency of nozzle.
Here, efficiency of nozzle is
Write the expression of energy balance equation for the converging-diverging nozzle.
Inlet velocity is equal to zero
Here, velocity of steam at the inlet of nozzle is
Write the expression to calculate the exit area of the nozzle.
Here, mass flow rate of steam is
Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.
Here, pressure drop in the nozzle is
Write the expression to calculate the Mach number for the steam at the exit of nozzle.
Here, Mach number of the steam at the exit is
Conclusion:
Refer Table A-6, “Superheated water”, obtain the values of
Here, at superheated condition the entropy of saturated steam is
Refer Table A-6, “Superheated water”, obtain the isentropic final entropy value
Substitute
The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy
at the inlet
Substitute
Thus, the exit velocity of the stream is
Substitute
Thus, the mass flow rate is
Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam
Substitute
Substitute
Thus, the Mach number at the exit of nozzle is
Want to see more full solutions like this?
Chapter 17 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- please solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forwardplease solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forward
- please help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forward
- plese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forward
- PROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forwardDistilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





