
Saturated steam enters a converging–diverging nozzle at 1.75 MPa, 10 percent moisture, and negligible velocity, and it exits at 1.2 MPa. For a nozzle exit area of 25 cm2, determine the throat area, exit velocity, mass flow rate, and exit Mach number if the nozzle (a) is isentropic and (b) has an efficiency of 92 percent.
(a)

The exit velocity for isentropic converging-diverging nozzle.
The mass flow rate for isentropic converging-diverging nozzle.
The exit Mach number for isentropic converging-diverging nozzle.
The throat area for isentropic converging-diverging nozzle.
Answer to Problem 148RP
The exit velocity for isentropic converging-diverging nozzle is
The mass flow rate for isentropic converging-diverging nozzle is
The exit Mach number for isentropic converging-diverging nozzle is
The throat area for isentropic converging-diverging nozzle is
Explanation of Solution
Determine the initial specific enthalpy of the isentropic converging-diverging nozzle.
Here, the specific enthalpy of saturated liquid is
Determine the initial entropy of the isentropic converging-diverging nozzle.
Here, the specific entropy of saturated liquid is
Determine the final quality of the isentropic converging-diverging nozzle.
Here, the final entropy of the isentropic converging-diverging nozzle is
Determine the final specific enthalpy of the isentropic converging-diverging nozzle.
Determine the final specific volume of the isentropic converging-diverging nozzle.
Determine the exit velocity of the isentropic converging-diverging nozzle.
Note: the fluid flow was complete stop at the initial exit velocity then it becomes zero.
Determine the mass flow rate of the isentropic converging-diverging nozzle.
Determine the velocity of sound at the exit of the isentropic converging-diverging nozzle.
Determine the exit Mach number for isentropic converging-diverging nozzle.
Determine the critical pressure at the throat.
Here, the stagnation pressure at the initial state is
Determine the velocity of throat using steady-flow energy balance.
Note: the initial velocity is zero.
Determine the throat area for isentropic converging-diverging nozzle.
Conclusion:
At the inlet,
Perform unit conversion of pressure at state 1 from MPa to kPa.
From the Table A-5, “Saturated water-Pressure table”, obtain value of the specific enthalpy of saturated liquid, the specific enthalpy change upon vaporization, specific entropy of saturated liquid, and the specific entropy change upon vaporization at 1750 kPa of temperature as:
Substitute
Substitute
At the exit,
Perform unit conversion of pressure at state 2 from MPa to kPa.
From the Table A-5, “Saturated water-Pressure table”, obtain value of the specific volume of saturated liquid, the specific volume change upon vaporization, specific enthalpy of saturated liquid, the specific enthalpy change upon vaporization, specific entropy of saturated liquid, and the specific entropy change upon vaporization 1200 kPa of temperature as:
Substitute
Substitute
Substitute
Substitute
Thus, the exit velocity for isentropic converging-diverging nozzle is
Substitute
Thus, the mass flow rate for isentropic converging-diverging nozzle is
At state 2 entropy value for the specific volume of steam and at pressure just below and just above the specified pressure
Substitute 1.1 MPa for
Substitute
Thus, the exit Mach number for isentropic converging-diverging nozzle is
Substitute 1.75 MPa for
From the above throat pressure the value of enthalpy and specific volume as:
Substitute
Substitute
Thus, the throat area for isentropic converging-diverging nozzle is
(b)

The exit velocity for isentropic converging-diverging nozzle.
The mass flow rate for isentropic converging-diverging nozzle.
The exit Mach number for isentropic converging-diverging nozzle.
The throat area for isentropic converging-diverging nozzle.
Answer to Problem 148RP
The exit velocity for isentropic converging-diverging nozzle is
The mass flow rate for isentropic converging-diverging nozzle is
The exit Mach number for isentropic converging-diverging nozzle is
The throat area for isentropic converging-diverging nozzle is
Explanation of Solution
Determine the initial specific enthalpy of the isentropic converging-diverging nozzle.
Here, the specific enthalpy of saturated liquid is
Determine the initial entropy of the isentropic converging-diverging nozzle.
Here, the specific entropy of saturated liquid is
Determine the final quality of saturated steam for the isentropic converging-diverging nozzle.
Here, the final entropy of the isentropic converging-diverging nozzle is
Determine the final specific enthalpy of saturated steam for the isentropic converging-diverging nozzle.
Determine the enthalpy of steam at the actual exit state for the isentropic converging-diverging nozzle.
Determine the final specific enthalpy for the isentropic converging-diverging nozzle.
Determine the exit entropy of the isentropic converging-diverging nozzle.
Determine the final specific volume of the isentropic converging-diverging nozzle.
Determine the exit velocity of the isentropic converging-diverging nozzle.
Note: the fluid flow was complete stop at the initial exit velocity then it becomes zero.
Determine the mass flow rate of the isentropic converging-diverging nozzle.
Determine the velocity of sound at the exit of the isentropic converging-diverging nozzle.
Determine the exit Mach number for isentropic converging-diverging nozzle.
Determine the critical pressure at the throat.
Here, the stagnation pressure at the initial state is
Determine the actual enthalpy of steam at the throat.
Determine the velocity of throat using steady-flow energy balance.
Note: the initial velocity is zero.
Determine the throat area for isentropic converging-diverging nozzle.
Conclusion:
At the inlet,
Perform unit conversion of pressure at state 1 from MPa to kPa.
From the Table A-5, “Saturated water-Pressure table”, obtain value of the specific enthalpy of saturated liquid, the specific enthalpy change upon vaporization, specific entropy of saturated liquid, and the specific entropy change upon vaporization at 1750 kPa of temperature as:
Substitute
Substitute
At the exit,
Perform unit conversion of pressure at state 2 from MPa to kPa.
From the Table A-5, “Saturated water-Pressure table”, obtain value of the specific volume of saturated liquid, the specific volume change upon vaporization, specific enthalpy of saturated liquid, the specific enthalpy change upon vaporization, specific entropy of saturated liquid, and the specific entropy change upon vaporization 1200 kPa of temperature as:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the exit velocity for isentropic converging-diverging nozzle is
Substitute
Thus, the mass flow rate for isentropic converging-diverging nozzle is
At state 2 entropy value for the specific volume of steam and at pressure just below and just above the specified pressure
Substitute 1.1 MPa for
Substitute
Thus, the exit Mach number for isentropic converging-diverging nozzle is
Substitute 1.75 MPa for
From the above throat pressure and entropy at the state 2ts the value of enthalpy as:
Substitute
From the above throat pressure and enthalpy at the state 2 the value of specific volume as:
Substitute
Substitute
Thus, the throat area for isentropic converging-diverging nozzle is
Want to see more full solutions like this?
Chapter 17 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- The feed flow rate to an adiabatic continuous stirred tank reactor (CSTR) in which an exothermicreaction is occurring is increased from 1000 to 1400. kg/h, causing the outlet temperature to change as shown:a) Briefly explain on a physical basis why the temperature in this system oscillates after a step increasein the inlet flow rate. Be clear, complete, and concise. c) You know that this oscillating response cannot be that of two first order processes with real timeconstant acting in series. Assuming the reaction is first order and the CSTR operates with constant holdup,derive the block diagram with all transfer functions indicating how the temperature would respond to the feedflow rate step change (W’(s) as input and T’(s) as output). An intermediate variable in this block diagram willbe the concentration of A in the reactor, represented by CA’(s). d) A correct result for part c) will include a feedback loop in the block diagram, indicating the responsein T to a change in w is not…arrow_forwardSpur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearingarrow_forwardProblem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forward
- An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forward
- Problem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





