CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.7, Problem 138RP
To determine
The required back pressure that produces a normal shock at the exit plane.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In compressible flow, velocity measurements with a Pitot probe can be grossly in error if relations developed for incompressible flow are used. Therefore, it is essential that compressible flow relations be used when evaluating flow velocity from Pitot probe measurements. Consider supersonic flow of air through a channel. A probe inserted into the flow causes a shock wave to occur upstream of the probe, and it measures the stagnation pressure and temperature to be 620 kPa and 340 K, respectively. If the static pressure upstream is 110 kPa, determine the flow velocity.
4- Air at stagnation pressure of 600
kpa and stagnation temperature of 530
K enters a frictionless convergent-
divergent nozzle as shown in figure
the throat area is 5cm2 and the exit
area is 12.5 cm2, the back pressure is
300kpa, and normal shock occurs
within the divergent section.
Determine the following: A- The Mach
number at the exit B- The change in
stagnation pressure C- Mx and My are
D- The cross sectional area where the
shock occurs is approximately
Air flows through a constant area combustion
chamber that has a diameter of 0.15 m and a
length 5 m. The inlet stagnation temperature is
335 K, the inlet stagnation pressure is 1.4 MPa,
and the inlet Mach number is 0.55. Find the
maximum rate at which heat can be added to
the flow. Neglect the effects of friction.
Chapter 17 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Prob. 6PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Air enters a converging–diverging nozzle with low velocity at 2.4 MPa and 120°C. If the exit area of the nozzle is 3.5 times the throat area, what must the back pressure be to produce a normal shock at the exit plane of the nozzle?arrow_forwardQ4: A convergent-divergent nozzle is operating under off-design conditions resulting in the presence of a shock wave in the diverging portion. A reservoir contacting air at 400 kPa and 800K supplies the nozzle, whose throat area is 0.2 m2. The upstream Mach number of the shock is M1 = 2.44. The area at the exit is 0.7 m2. Find area at the location of shock and exit temperature. Ans: Mt = 1.662; Me = 0.4571 and (c) Pe/pa = 4.3591 throat P. = 400 kPa T, = 800 K 2.arrow_forwardAir flows isentropically through a convergent-divergent nozzle from a large reservoir where the temperature and pressure are 300°C and 500kPa, respectively. The nozzle is designed to exit air at 2.625 Mach number with an exit area of 1.2cm². Determine: a. The exit pressure. b. Mass flow at design conditions. c. Estimate the range of back pressures for which mass flow will be a maximum.arrow_forward
- Air flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.6. The pressure and temperature of air are 52 kPa and 270 K, respectively. Now, helium undergoes a normal shock under the same conditions. Calculate the entropy changes of air and helium across the normal shock. The properties of air are R = 0.287 kJ/kg-K and cp= 1.005 kJ/kg-K, and the properties of helium are R=2.0769 kJ/kg-K and cp=5.1926 kJ/kg.K. The entropy change for air is The entropy change for helium is kJ/kg-K. kJ/kg-K.arrow_forwardThe mass flow of air through a supersonic nozzle is 1.5 lbm/s. The exit velocity is 1,500 ft/sec, and the reservoir temperature and pressure are 1,000 'R and 7 atm , respectively. Calculate the area of the nozzle exitarrow_forwardb) Air entering a converging-diverging nozzle at 1 MPa and 527 °C with negligible velocity experiences a normal shock wave at the exit. The mass flow rate through the nozzle is 2.86 kg/s and the static temperature just before the shock is 171 °C. Determine: i. The cross sectional area of the throat, and ii. The static temperature after the shock.arrow_forward
- 2. Determine the back pressure necessary for a normal shock to appear at the exit of a converging-diverging nozzle, as shown in the figure. Assume y = 1.4. Pr = 1.0 MPa T₁ = 800 K рь A exit A throat = 2.0arrow_forwardAir is expanded from 200 kPa and 500°K through a throat to an exit Mach number of 2.5. If the desired mass flow is 3 kg/s, calculate the throat area, exit pressure, exit temperature, exit velocity, and the discharge area assuming isentropic flow.arrow_forwardAir in a large tank is at a pressure of 800 kPa and a temperature of 300 K. It is expanded through a converging diverging nozzle until the Mach number is 3, where there is a normal shock. The air is then decelerated isentropically to rest in a second large tank. What are the temperature and pressure inside the tank? What is the flow speed downstream of the normal shock?arrow_forward
- A large tank supplies helium to a converging-diverging nozzle. The pressure and temperature in the tank remain constant at 6 MPa and 1000 K, respectively. The flow throughout the nozzle is lsentropic. The nozzle discharges to the atmosphere with a pressure of 100 kPa at an exit Mach number of 3. The exit cross-sectional area of the nozzle is 0.001 m'. What is the mass flow rate through the nozzle?arrow_forward1 atm = 2116 lb/ft2 = 1.01 × 105 N/m2. Just upstream of a shock wave, the air temperature and pressure are 288 Kand 1 atm, respectively; just downstream of the wave, the air temperatureand pressure are 690 K and 8.656 atm, respectively. Calculate the changesin enthalpy, internal energy, and entropy across the wave.arrow_forwardA jet engine is to be designed for an altitude of 12,000 m, where the atmospheric pressure is 19.3 kPa. The jet nozzle has a supersonic exit Mach number and is perfectly expanded. The stagnation pressure and temperature of the gas are 112 kPa and 600°C. The flowrate of gas is 66 kg/s. Calculate the throat J area, exit area, and exit velocity. Use k = 1.4 and R = 260 for the gas. kg.K A₂ = i A₁ = i Ve= m² m² m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license