The pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock and Compare for helium undergoing a normal shock under the same conditions.

Answer to Problem 90P
The Mach number value of air after the normal shock through the nozzle is
The actual temperature of air after the normal shock through the nozzle
is
The actual pressure of air after the normal shock through the nozzle is
The stagnation pressure of air after the normal shock though the nozzle
is
The velocity of air after the normal shock through the nozzle is
Thus, the Mach number of helium gas after the normal shock through the nozzle
is
Thus, the actual temperature of helium after the normal shock through the nozzle is
Thus, the actual pressure of helium after the normal shock through the nozzle
is
Thus, the stagnation pressure of helium after the normal shock though the nozzle
is
Thus, the velocity of helium after the normal shock through the nozzle is
Comparison between the obtained results of air and helium is shown in below Table:
Parameters/ Conditions | Air | Helium |
Mach number value | ||
Actual temperature of air | ||
Actual pressure of air | ||
Stagnation pressure | ||
Velocity |
Explanation of Solution
Write the expression for the velocity of sound after the normal shock.
Here, velocity of sound after the shock is
Write the expression for the velocity of airafter the normal shock.
Write the expression for the Mach number for helium after the normal shock.
Here, Mach number of helium before the normal shock is
before the normal shock is
Write the expression for the actual pressure of helium gas after the normal shock.
Here, actual pressure of helium after the shock is
Write the expression for the actual temperature of helium gas after the normal shock.
Here, actual temperature of helium after the shock is
Write the expression for the actual pressure of helium gas after the normal shock.
Here, stagnation pressure of helium after the shock is
Write the expression for the velocity of sound after the normal shock.
Here, velocity of sound after the shock is
Write the expression for the velocity of helium after the normal shock.
Conclusion:
Refer to Table A-33, “One-dimensional normal-shock functions for an ideal gas with k 5 1.4”, obtain the expressions of temperature ratio, pressure ratio, stagnation pressure ratio, and Mach number after the shock for a Mach number of 2.6 before the shock.
Thus, the Mach number value of air after the normal shock through the nozzle is
Here, actual pressure after the shock is
Substitute
Thus, the actual temperature of air after the normal shock through the nozzle
is
Substitute
Thus, the actual pressure of air after the normal shock through the nozzle is
The actual pressure before the normal shock is the same as the stagnation pressure before the normal shock
Substitute
Thus, the stagnation pressure of air after the normal shock though the nozzle
is
Refer to thermodynamics properties table and interpret the value of k, and R for a temperature of
Substitute 1.4 for k,
Substitute 0.5039for
Thus, the velocity of air after the normal shock through the nozzle is
Substitute 2.6for
Thus, the Mach number of helium gas after the normal shock through the nozzle
is
Substitute 1.667 for k, 2.6for
Substitute 1.667 for k, 2.6for
Substitute 1.667 for k, 2.6for
Substitute
Thus, the actual temperature of helium after the normal shock through the nozzle is
Substitute
Thus, the actual pressure of helium after the normal shock through the nozzle
is
Since,
Substitute
Thus, the stagnation pressure of air after the normal shock though the nozzle
is
Refer Table A–1, “Molar mass, gas constant, and critical2point properties”, obtain
the value of k, and R for a temperature of
Substitute 1.667 for k,
Substitute 0.5455 for
Thus, the velocity of air after the normal shock through the nozzle is
Want to see more full solutions like this?
Chapter 17 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
- 4. Now consider the figure below showing a wooden block subjected to biaxial loading, and its stress state in the laboratory coordinate system. The grain in the wood is aligned at an angle of 15° to the vertical direction as shown. Determine the stress state in the orientation of the grain. Y σy = 1.8 MPa 15° σx = 3 MPa ох ==arrow_forwardplease hand-written solution only!arrow_forwardhand-written solution only please!arrow_forward
- handwritten solutions only, please!arrow_forwardOn from the equation: 2 u = C₁ + C₂ Y + Czy + Cu y³ Find C₁, C₂, C3 and Cy Using these following Cases : (a) 4=0 at y=0 (b) U = U∞ at y = 8 du (c) at Y = S ду --y. ди = 0 at y = 0 бугarrow_forwardI need help with a MATLAB code. I am trying to solve this question. Based on the Mars powered landing scenariosolve Eq. (14) via convex programming. Report the consumed fuel, and discuss the results with relevant plots. I am using the following MATLAB code and getting an error. I tried to fix the error and I get another one saying something about log and exp not being convex. Can you help fix my code and make sure it works. The error is CVX Warning: Models involving "log" or other functions in the log, exp, and entropy family are solved using an experimental successive approximation method. This method is slower and less reliable than the method CVX employs for other models. Please see the section of the user's guide entitled The successive approximation method for more details about the approach, and for instructions on how to suppress this warning message in the future.Error using .* (line 173)Disciplined convex programming error: Cannot perform the operation:…arrow_forward
- Note: please use integration for parabolic volume (Vp) of the fluid displaced due to rotation. (Make it simpe as possible to follow in the working out). Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardNote: use centroid method please Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardCalculate the cutting time for a 4 in length of cut, given that the feed rate is 0.030 ipr at a speed of 90 fpm.arrow_forward
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





