CONNECT FOR THERMODYNAMICS: AN ENGINEERI
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 17.7, Problem 103P
To determine

The rate of heat transfer in the duct.

The pressure drop in the duct.

Expert Solution & Answer
Check Mark

Answer to Problem 103P

The rate of heat transfer in the duct is 2695Btu/s_.

The pressure drop in the duct is 15.6psia_.

Explanation of Solution

Determine the inlet density of air.

ρ1=P1RT1 (I)

Here, the inlet pressure of air is P1, the universal gas constant of air is R, and the inlet temperature of air is T1.

Determine the cross sectional area of duct at inlet.

Ac1=πD24 (II)

Here, the diameter of the duct is D.

Determine the inlet velocity of air.

V1=m˙airρ1Ac1 (III)

Here, the mass flow rate of the air is m˙air and the density of the air is ρ1.

Determine the inlet stagnation temperature of air.

T01=T1+V122cp (IV)

Here, the inlet static temperature of ideal gas is T3, the specific heat of pressure for ideal gas is cp, and the inlet velocity of the ideal gas flow is V1.

Determine the relation of ideal gas speed of sound at the inlet.

c1=kRT1 (V)

Here, the specific heat ratio of air is k, the gas constant of the air is R, and the inlet temperature of the air is T1.

Determine the speed of sound at the inlet.

Ma1=V1c1 (VI)

The inlet velocity of the air flow in the device is V1 and the inlet Mach number is Ma1.

Determine the static temperature in the duct.

T2T1=T2/TT1/T (VII)

Here, the ratio of Rayleigh flow for inlet temperature is T1/T and the ratio of Rayleigh flow for outlet temperature is T2/T.

Determine the static pressure in the duct.

P2P1=P2/PP1/P (VIII)

Here, the ratio of Rayleigh flow for inlet pressure is P1/P and the ratio of Rayleigh flow for outlet pressure is P2/P.

Determine the stagnation temperature in the duct.

T02T01=T02/TT01/T (IX)

Here, the ratio of Rayleigh flow for exit stagnation temperature is T01/T and the ratio of Rayleigh flow for outlet stagnation temperature is T02/T.

Determine the rate of heat transfer of the duct.

Q˙=m˙aircp(T02T01) (X)

Determine the pressure drop of the duct.

ΔP=P1P2 (XI)

Conclusion:

From the Table A-2E, “Ideal-gas specific heats of various common gases” to obtain value of universal gas constant, specific heat of pressure, and the specific heat ratio of air at 80°F temperature as 0.06855Btu/lbmR, 0.2400Btu/lbmR and 1.4.

Substitute 30psia for P1, 0.06855Btu/lbmR for R, and 800R for T1 in Equation (I).

ρ1=30psia(0.06855Btu/lbmR)(800R)=30psia(0.06855Btu/lbmR×(5.40395psiaft31Btu))(800R)=30psia(0.3704psiaft3/lbmR)(800R)=0.1012lbm/ft3

Substitute 6in for D in Equation (II).

Ac1=π(6in)24=π(6in×(1ft12in))24=π(0.5ft)24=0.19635ft2

Substitute 9lbm/s for m˙air, 0.1012lbm/ft3 for ρ1, and 0.19635ft2 for Ac1 in Equation (III).

V1=(9lbm/s)(0.1012lbm/ft3)(0.19635ft2)=(9lbm/s)(0.0.19871lbm/ft)=452.93ft/s

Substitute 800R for T1, 452.93ft/s for V1, and 0.2400Btu/lbmR for cp in Equation (IV).

T01=(800R)+(452.93ft/s)22×(0.2400Btu/lbmR)=(800R)+(205146.5ft2/s2)(0.48Btu/lbmR)=(800R)+(205146.5ft2/s2)×(1Btu/lbm25,037ft2/s2)(0.48Btu/lbmR)=(800R)+(17.07R)

=817.07R817.1R

Substitute 1.4 for k, 0.06855Btu/lbmR for R, and 800R for T1 in Equation (V).

c1=(1.4)(0.06855Btu/lbmR)×(800R)=(1.4)(0.06855Btu/lbmR)×(25,037ft2/s21Btu/lbm)×(800R)=1922241ft2/s2=1386ft/s

Substitute 1386ft/s for c1 and 452.93ft/s for V1 in Equation (I).

Ma1=(452.93ft/s)(1386ft/s)=0.3267890.3268

Refer to Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value ratio of static temperature, pressure, and stagnation temperature at 0.3268 inlet Mach number using interpolation method of two variables.

Write the formula of interpolation method of two variables.

y2=(x2x1)(y3y1)(x3x1)+y1 (XII)

Here, the variables denote by x and y is ratio of stagnation temperature and Mach number.

Show the Mach number at 0.3 and 0.4 as in Table (1).

S. No

Mach number

(x)

ratio of stagnation temperature

(y)

10.30.3469
20.3268y2=?
30.40.5290

Calculate ratio of static temperature, pressure, and stagnation temperature at 0.3268 inlet Mach number using interpolation method.

Substitute 0.3 for x1, 0.3268 for x2, 0.4 for x3, 0.3469 for y1, and 0.5290 for y3 in Equation (XII).

y2=(0.32680.3)(0.52900.3469)(0.40.3)+0.3469=0.395680.3957

From above calculation the ratio of stagnation temperature at 0.3268 is inlet Mach number 0.3957.

Repeat the Equation (XII), to obtain the value of inlet ratio of static temperature and pressure at 0.3268 inlet Mach number as:

T1/T=0.4642P1/P=2.0857

From the Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value of the outlet ratio of temperature, pressure, and velocity at 1 outlet Mach number as:

T2/T=1P2/P=1V2/V=1

Substitute 800R for T1, 1 for T2/T, and 0.4642 for T1/T in Equation (VII).

T2(800R)=10.4642T2=(800R)0.4642T2=1723R

Substitute 30 psia for P1, 1 for P2/P, and 2.0857 for P1/P in Equation (VIII).

P2(30psia)=12.0857P2=(30psia)2.0857P2=14.38psiaP214.4psia

Substitute 817.1R for T02, 1 for T02/T, and 0.3957 for T01/T in Equation (IX).

T01(817.1R)=10.3957T01=(817.1R)0.3957T01=2064.9RT012065R

Substitute 9lbm/s for m˙air, 0.2400Btu/lbmR for cp, 2065R for T02 and 817.1R for T01 in Equation (X).

Q˙=(9lbm/s)(0.2400Btu/lbmR)(2065817.1)R=(9lbm/s)(0.2400Btu/lbmR)(1247.9R)=2695.4Btu/s2695Btu/s

Thus, the rate of heat transfer in the duct is 2695Btu/s_.

Substitute 30psia for P1 and 14.4psia for P2 in Equation (XI).

ΔP=(3014.4)psia=15.6psia

Thus, the pressure drop in the duct is 15.6psia_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Air enters a 5.5-cm-diameter adiabatic duct with inlet conditions of Ma1 = 2.2, T1 = 250 K, and P1 = 60 kPa, and exits at a Mach number of Ma2 = 1.8. Taking the average friction factor to be 0.03, determine the velocity, temperature, and pressure at the exit.
(b) Air flows through a cylindrical duct at a rate of 2.3 kg/s. Friction between air and the duct and friction within air can be neglected. The diameter of the duct is 10cm and the air temperature and pressure at the inlet are T₁ 450 K and P₁ = 200 kPa. If the Mach number at the exit is Ma2 determine the rate of heat transfer and the pressure difference across the duct. The constant pressure specific heat of air is cp = 1.005 kJ/kg-K. The gas constant of air is R = 0.287 kJ/kg-K and assume k = 1.4. -
Argon is accelerated in a nozzle from 32 m/s at 666 K to 441 m/s and 196 kPa. If the heat loss is equal to 5.1 kJ/kg, determine the gas temperature at outlet in K to 1 decimal place. Take the gas constant as 0.2 (kPa m3)/(kg K) and assume constant specific heats cp=0.5 kJ/(kg K) and cv=0.3 kJ/(kg K).

Chapter 17 Solutions

CONNECT FOR THERMODYNAMICS: AN ENGINEERI

Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License