Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
9th Edition
ISBN: 9781260048667
Author: Yunus A. Cengel Dr.; Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.7, Problem 102P
To determine
The Mach number at the duct exit.
The drop in stagnation pressure
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How is a steady-flow system characterized?
The moist air with barometric pressure of 101.325 kPa enters a chamber at 2.5°C Wet bulb temperature and 5°C dry bulb temperature at the rate of 90 m3/min. While passing through the chamber, the air absorbs sensible heat at the rate of 42 kW and picks up 0.01 kg/sec of saturated steam at 105°C. Determine the dry bulb and wet bulb temperatures of the leaving air.
What is a quasi-equilibrium process? What is its importance in engineering?
Chapter 17 Solutions
Thermodynamics: An Engineering Approach ( 9th International Edition ) ISBN:9781260092684
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Prob. 6PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- What is mass transfer? Heat transfer? And momentum transfer?arrow_forwardAnswer the questionsWhat is the mathematical model of enthalpy?What is the mathematical model to calculate the flow work?arrow_forward39.6 cmm of a mixture of recirculated room air and outdoor air enter a cooling coil at 31°C DB and 18.5°C WB temperatures. The effective surface temperature of the coil is 4.4°C. The surface area of the coil is such as would give 12.5 kW of refrigeration with the given entering air state. Determine the dry and wet bulb temperatures of the air leaving the coil and the coil bypass factor.arrow_forward
- An end-burning rocket motor has a chamber diameter of 10 cm and a nozzle exit diameter of 8 cm. The density of the propellant is 1750 kg/m3 and the surface regresses at the rate of 1 cm/s. The gases crossing the nozzle exit plane have a pressure of 10 kPa abs and a temperature of 2200°C. The gas constant of the exhaust gases is 415 J/kg.K. Calculate the gas velocity at the nozzle exit plane in m/s.arrow_forwardThe chilling room of a meat plant is 15 m × 18 m × 5.5 m in size and has a capacity of 350 beef carcasses. The power consumed by the fans and the lights in the chilling room are 22 and 2 kW, respectively, and the room gains heat through its envelope at a rate of 14 kW. The average mass of beef carcasses is 220 kg. The carcasses enter the chilling room at 35C, after they are washed to facilitate evaporative cooling, and are cooled to 16°C in 12 h. The air enters the chilling room at 2.2°C and leaves at 0.5°C. Determine (a) the refrigeration load of the chilling room and (b) the volume flow rate of air. The average specific heats of beef carcasses and air are 3.14 and 1.0 kJ/kg · °C, respectively, and the density of air can be taken to be 1.28 kg/m3 .arrow_forwardThank you so much can you hand write clear pleasearrow_forward
- Liquid water flows in a thin-walled circular tube at a mass flow rate of 11 g/s. The water enters the tube at 60°C, where it is heated at a rate of 3.8 kW. The tube is circular with a length of 2.5 m and an inner diameter of 25 mm. The tube surface is maintained at a constant temperature. At the tube exit, a hydrogenated nitrile rubber (HNBR) o-ring is attached to the tube’s outer surface. The maximum temperature permitted for the o-ring is 150°C. Is the HNBR o-ring suitable for this operation? The fluid properties at 100°C are cp = 4217 J/kg∙K, k = 0.679 W/m∙K, μ = 0.282 × 10−3 kg/m∙s, and Pr = 1.75. Is this a reasonable temperature at which to evaluate the fluid properties? The surface temperature of the tube is?arrow_forwardLiquid water flows in a thin-walled circular tube at a mass flow rate of 11 g/s. The water enters the tube at 60°C, where it is heated at a rate of 3.8 kW. The tube is circular with a length of 2.5 m and an inner diameter of 25 mm. The tube surface is maintained at a constant temperature. At the tube exit, a hydrogenated nitrile rubber (HNBR) o-ring is attached to the tube's outer surface. The maximum temperature permitted for the o-ring is 150°C. Is the HNBR o-ring suitable for this operation? The fluid properties at 100°C are cp= 4217 J/kg-K, k= 0.679 W/m-K, µ = 0.282 × 103 kg/m.s, and Pr = 1.75. Is this a reasonable temperature at which to evaluate the fluid properties?arrow_forwardA 25-cm-diameter stainless steel ball (r = 8055 kg/m3, cp 480 J/kg·°C) is removed from the oven at a uniform temperature of 300°C . The ball is then subjected to the flow of air at 1 atm pressure and 25°C with a velocity of 3 m/s. The surface temperature of the ball eventually drops to 200°C. Determine the average convection heat transfer coefficient during this cooling process and estimate how long the process will take.arrow_forward
- An insulated pipe of inside diameter 50 mm contains steam of specific enthalpy2·794 MJ/kg and specific volume 0·0394 m3 /kg. The pipe then reduces to 25 mmdiameter, and the specific enthalpy is then 2·786 MJ /kg and the specific volume is0·1043 m/kg. Determine the mass flow rate of the steam and its velocity in bothsections of the pipearrow_forwardThe fluid condition at the inlet and exit of a horizontal convergent nozzle is analysed. The nozzle is operating steadily and heat loss is assumed negligible. If the specific enthalpy of fluid and velocity of fluid at the inlet are 3,489 kJ/kg and 219 km/hr respectively. At the exit the specific enthalpy of fluid is 2,673 J/kg. Calculate the velocity of the fluid at the exit of the nozzle in m/s,arrow_forwardA 4-m-long section of an air heating system of a house passes through an unheated space in the attic. The inner diameter of the circular duct of the heating system is 21 cm. Hot air enters the duct at 100 kPa and 65.8°C at an average velocity of 3.5 m/s. The temperature of the air in the duct drops to 59.5°C as a result of heat loss to the cool space in the attic. Determine the rate of heat loss from the air in the duct to the attic under steady conditions. Also, determine the cost of this heat loss per hour if the house is heated by a natural gas furnace having an efficiency of 83 percent, and the cost of the natural gas in that area is $0.58/therm (1 therm = 105,500 kJ). Answer in $/hr and four(4) decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License