21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.3, Problem 17.3CYU
To determine
One of the reasons why astronomers think that neutron stars were formed in supernova explosions.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
24
If the Temperature of the core of a supernova is 3200 x 1023 K, what should be the average translational kinetic energy of the particles moving inside this supernov
(Boltzmann's constant = 1.38 x 10-23 J/K)
Type your answer...
Why don’t all supernova remnants contain pulsars?
a.
All supernova remnants do contain pulsars.
b.
Some supernova explosions form white dwarfs instead of the neutron stars necessary for pulsars.
c.
Pulsars slow down and quit producing the pulses before the supernova remnant dissipates.
d.
The pulsar may be tipped so that the beams do not sweep past Earth.
e.
b and c
The chemical abundance of population I stars
a.
indicates that they were formed before the population II stars.
b.
indicates that the material they formed from had been enriched with material from supernovae.
c.
indicates that they contain very few heavy metals compared to halo stars.
d.
depends on the temperature of the star.
e.
depends on the mass of the star.
Chapter 17 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 17.1 - Prob. 17.1CYUCh. 17.2 - Prob. 17.2CYUCh. 17.3 - Prob. 17.3CYUCh. 17.4 - Prob. 17.4CYUCh. 17 - Prob. 1QPCh. 17 - Prob. 2QPCh. 17 - Prob. 3QPCh. 17 - Prob. 4QPCh. 17 - Prob. 5QPCh. 17 - Prob. 6QP
Ch. 17 - Prob. 7QPCh. 17 - Prob. 8QPCh. 17 - Prob. 9QPCh. 17 - Prob. 10QPCh. 17 - Prob. 11QPCh. 17 - Prob. 12QPCh. 17 - Prob. 13QPCh. 17 - Prob. 14QPCh. 17 - Prob. 15QPCh. 17 - Prob. 16QPCh. 17 - Prob. 17QPCh. 17 - Prob. 18QPCh. 17 - Prob. 19QPCh. 17 - Prob. 20QPCh. 17 - Prob. 21QPCh. 17 - Prob. 22QPCh. 17 - Prob. 23QPCh. 17 - Prob. 24QPCh. 17 - Prob. 25QPCh. 17 - Prob. 26QPCh. 17 - Prob. 27QPCh. 17 - Prob. 28QPCh. 17 - Prob. 29QPCh. 17 - Prob. 30QPCh. 17 - Prob. 31QPCh. 17 - Prob. 32QPCh. 17 - Prob. 33QPCh. 17 - Prob. 34QPCh. 17 - Prob. 35QPCh. 17 - Prob. 36QPCh. 17 - Prob. 37QPCh. 17 - Prob. 38QPCh. 17 - Prob. 39QPCh. 17 - Prob. 40QPCh. 17 - Prob. 41QPCh. 17 - Prob. 42QPCh. 17 - Prob. 43QPCh. 17 - Prob. 44QPCh. 17 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- B1arrow_forwardWhat keeps a neutron star from collapsing?a. the thermal pressure resulting from nuclear fusion in its core; b. the degenerate neutron gas pressure;c. the degenerate electron gas pressure;d. the convectionarrow_forwardWhich of the following statements about various stages of core nuclear burning (hydrogen, helium, carbon, etc.) in a high- mass star is not true? A. As each stage ends, the core shrinks and heats further. B. Each successive stage creates an element with a higher atomic number and atomic mass number. C. As each stage ends, the reactions that occurred in previous stages continue in shells around the core. D.Each successive stage lasts for approximately the same amount of time.arrow_forward
- Look at the four stages shown in Figure 21.8. In which stage(s) can we see the star in visible light? In infrared radiation? Figure 21.8 Formation of a Star. (a) Dense cores form within a molecular cloud. (b) A protostar with a surrounding disk of material forms at the center of a dense core, accumulating additional material from the molecular cloud through gravitational attraction. (c) A stellar wind breaks out but is confined by the disk to flow out along the two poles of the star. (d) Eventually, this wind sweeps away the cloud material and halts the accumulation of additional material, and a newly formed star, surrounded by a disk, becomes observable. These sketches are not drawn to the same scale. The diameter of a typical envelope that is supplying gas to the newly forming star is about 5000 AU. The typical diameter of the disk is about 100 AU or slightly larger than the diameter of the orbit of Pluto.arrow_forwardWhich of the following statements is wrong? A. A main-sequence star is cooler and brighter than it was as a protostar. B. Carbon fusion occurs in high-mass stars but not in low-mass stars because the cores of low-mass stars never contain significant amounts of carbon. C. when a main-sequence star exhausts its core hydrogen fuel supply, the core shrinks while the rest of the star expands. D. After a supernova explosion, the remains of the stellar core will be either a neutron star or a black hole.arrow_forwardQ7// a- Estimate the density of a white dwarf if it has a solar mass packed into a sphere with approximately 10² Ro b- For a white dwarf of density 1.0 x 10° g/cm3, and Z/A = 0.5, estimate the degeneracy pressure and compare it with the thermal pressure of a gas at a temperature of 1.0 x10' K.arrow_forward
- Why are Cepheid variables important? O Cepheids variables are pulsating stars whose pulsation periods are directly related to their true luminosities. Therefore they can be used as distance indicators. O Cepheids variables are supermassive stars that are on the verge of becoming supernovae. Therefore they allow us to choose candidates to watch if we hope to observe a supernova. O Cepheid variables are stars that vary in brightness because they harbor a black hole. Therefore, they provide direct evidence for black holes. O Cepheids variables are a type of irregular galaxy, much more common in the early universe. Therefore they help to understand how galaxies formed.arrow_forwardWhich of the following binary star systems cannot exist? A. A 1 solar-mass main sequence star and a 4 solar mass red giant with a size 100 times smaller than the orbital distance. B. A 15 solar-mass main sequence star and a 10 solar mass red giant with a size 100 times smaller than the orbital distance. C. A 1 solar-mass main sequence star and a 4 solar-mass main sequence star. D. A 2 solar-mass main sequence star and a 1 solar mass red giant with a size a few times smaller than the orbital distance.arrow_forwardIndicate whether the following are properties of Type Ia or Type II supernovae. (Select 1-Type Ia, 2-Type II. If the first is 1 and the rest 2, enter 12222222). A) Can occur in a very old star cluster. B) Can only occur in a binary system. C) The spectrum shows strong Hydrogen lines D) Produces very heavy elements like Uranium during the explosion. F) Could completely explode and leave no remnant behind. Supernovae of this type have the same peak luminosity.arrow_forward
- If a star is to eventually form a stellar black hole at any point in its life cycle what must happen? A. Gravity must be strong enough to compress all its material to be smaller than its schwartzchild radius B. it must pass by a supermassive black hole and tidal forces will do the rest C. Gravity must expand it so it can over power the nuclear forces that compress it and keep it from exploding by giving off all its heat D. A star will always have the same mass and radius and the only black holes that exist are ones that have existed shortly after the big bangarrow_forwardA. Estimate the surface gravity of a neutron star with R = 10 km and M = 2M. . B. Determine the density of such a neutron star in g/cm³. C. How much would a teaspoon (5 cm³) of this neutron star weigh on Earth? This material is known as neutronium. Give your answer in pounds. D. Which would be heavier: a teaspoon of neutronium weighed on Earth, or a teaspoon of water weighed on the surface of a neutron star?arrow_forwardYou discover a binary star system in which one member is a 15 solar-mass main-sequence star and the other star is a 10 solar-mass giant. Why should you be surprised, at least at first? A. It doesn't make sense to find a giant in a binary star system. B. The two stars in a binary system should both be at the same point in stellar evolution; that is, they should either both be main-sequence stars or both be giants. C. The two stars should be the same age, so the more massive one should have become a giant first. D. The odds of ever finding two such massive stars in the same binary system are so small as to make it inconceivable that such a system could be discovered. E. A star with a mass of 15 solar-mass is too big to be a main-sequence star.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning