21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 2QP
To determine
To arrange the elements in the order they fuse inside the nucleus of a high-mass star during the star’s evolution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following binary star systems cannot exist?
A. A 1 solar-mass main sequence star and a 4 solar mass red giant with a size 100 times smaller than the orbital distance.
B. A 15 solar-mass main sequence star and a 10 solar mass red giant with a size 100 times smaller than the orbital distance.
C. A 1 solar-mass main sequence star and a 4 solar-mass main sequence star.
D. A 2 solar-mass main sequence star and a 1 solar mass red giant with a size a few times smaller than the orbital distance.
There is a mass–luminosity relation because
a.
hydrogen fusion produces helium.
b.
stars expand when they become giants.
c.
stars support their weight by making energy.
d.
the helium flash occurs in degenerate matter.
e.
all stars on the main sequence have about the same radius.
Which of the following is wrong?
A. Tidal effects in a binary star system become more important when one or both stars become giant stars.
B. There is no fusion occurring in the core of a low-mass red giant star.
C. Gold (the element) is produced during the supernova explosions of high-mass stars.
D. Suppose the star Betelgeuse were to become a supernova tomorrow, we'd see by naked eyes a cloud of gas expanding away from the position where Betelgeuse used to be. Over a period of a few weeks, this cloud would fill a large part of our sky.
Chapter 17 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 17.1 - Prob. 17.1CYUCh. 17.2 - Prob. 17.2CYUCh. 17.3 - Prob. 17.3CYUCh. 17.4 - Prob. 17.4CYUCh. 17 - Prob. 1QPCh. 17 - Prob. 2QPCh. 17 - Prob. 3QPCh. 17 - Prob. 4QPCh. 17 - Prob. 5QPCh. 17 - Prob. 6QP
Ch. 17 - Prob. 7QPCh. 17 - Prob. 8QPCh. 17 - Prob. 9QPCh. 17 - Prob. 10QPCh. 17 - Prob. 11QPCh. 17 - Prob. 12QPCh. 17 - Prob. 13QPCh. 17 - Prob. 14QPCh. 17 - Prob. 15QPCh. 17 - Prob. 16QPCh. 17 - Prob. 17QPCh. 17 - Prob. 18QPCh. 17 - Prob. 19QPCh. 17 - Prob. 20QPCh. 17 - Prob. 21QPCh. 17 - Prob. 22QPCh. 17 - Prob. 23QPCh. 17 - Prob. 24QPCh. 17 - Prob. 25QPCh. 17 - Prob. 26QPCh. 17 - Prob. 27QPCh. 17 - Prob. 28QPCh. 17 - Prob. 29QPCh. 17 - Prob. 30QPCh. 17 - Prob. 31QPCh. 17 - Prob. 32QPCh. 17 - Prob. 33QPCh. 17 - Prob. 34QPCh. 17 - Prob. 35QPCh. 17 - Prob. 36QPCh. 17 - Prob. 37QPCh. 17 - Prob. 38QPCh. 17 - Prob. 39QPCh. 17 - Prob. 40QPCh. 17 - Prob. 41QPCh. 17 - Prob. 42QPCh. 17 - Prob. 43QPCh. 17 - Prob. 44QPCh. 17 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The triple-alpha process a. controls the pulsations in Cepheid variable stars. b. is the nuclear fusion of hydrogen to helium in massive stars. c. is the process that produces the neutrinos we receive from the sun. d. requires a temperature of about 5,000,000 K to operate. e. fuses helium nuclei to make carbon and occurs during helium flash.arrow_forwardThe gas and dust cocoon surrounding young stars a. is blown away when the young stellar surface heats up and becomes more luminous. b. remains surrounding the young star throughout its adult life. c. eventually collapses onto the star, increasing its mass and luminosity. d. evaporates gradually over the lifetime of the star. e. expands as the star’s luminosity increases eventually reaching a distance far enough that it condenses to form comets.arrow_forwardWhich of the following nuclear fuels does a one-solar-mass star use over the course of its entire evolution? a. hydrogen b. hydrogen and helium c. hydrogen, helium, and carbon d. hydrogen, helium, carbon, and neon e. hydrogen, helium, carbon, neon, and oxygenarrow_forward
- Which of the following statements is wrong? A. A main-sequence star is cooler and brighter than it was as a protostar. B. Carbon fusion occurs in high-mass stars but not in low-mass stars because the cores of low-mass stars never contain significant amounts of carbon. C. when a main-sequence star exhausts its core hydrogen fuel supply, the core shrinks while the rest of the star expands. D. After a supernova explosion, the remains of the stellar core will be either a neutron star or a black hole.arrow_forwardIf a stellar remnant is in between 0.4 and 1.4 solar masses, the resulting object will be a a. brown dwarf. b. red dwarf. c. white dwarf. d. neutron star. e. black hole.arrow_forwardThe chemical abundance of population I stars a. indicates that they were formed before the population II stars. b. indicates that the material they formed from had been enriched with material from supernovae. c. indicates that they contain very few heavy metals compared to halo stars. d. depends on the temperature of the star. e. depends on the mass of the star.arrow_forward
- The theory that the collapse of a massive star’s iron core produces neutrinos was supported by a. the size and structure of the Crab nebula. b. laboratory measurements of the mass of the neutrino. c. the brightening of supernovae a few days after they are first visible. d. underground counts from solar neutrinos. e. the detection of neutrinos from the supernova of 1987.arrow_forward4. Suppose we observe a binary star system in which one star is much more massive than the other and both are on the main sequence. We measure that the smaller star orbits the larger at a distance of 10¹3 m with a speed of 10 m/s. a. What is the mass of the larger star? b. Which star has a higher luminosity? c. Which has a larger radius? d. Which is hotter?arrow_forwardA star is observed with a surface temperature of 3,000 K and a luminosity of 100,000 solar luminosities What is the approximate mass of this star? a. 300 Solar masses b. it can't be determined from this information c. 3 Solar masses d. 0.3 Solar masses e. 30 Solar Massesarrow_forward
- As a white dwarf cools, its radius will not change because a. pressure resulting from nuclear reactions in a shell just below the surface keeps it from collapsing. b. pressure does not depend on temperature for a white dwarf because the electrons are degenerate. c. pressure does not depend on temperature because the white dwarf is too hot. d. pressure does not depend on temperature because the star has exhausted all its nuclear fuels. e. material accreting onto it from a companion maintains a constant radius.arrow_forwardThe hydrogen lines in spectral type A stars a. are most narrow for supergiants. b. are most narrow for main-sequence stars. c. cannot be used to estimate the luminosity of the star. d. are very weak and difficult to see. e. are useful in determining the apparent magnitude of the star.arrow_forwardOnce carbon builds up in the Sun's core, astronomers expect our Sun to first become a red giant, then a .. Select one: A. neutron star B. red dwarf C. planetary nebula D. black hole E. pulsararrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning