21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 36QP
To determine
The nature of the plot in Figure 17.13 and the reason why it means that oxygen lies on the y-axis at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is critical density? What is its estimated value?
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a
4
sphere is Tr.)
3
km
Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size?
I Table A-10 I Properties of the Planets
ORBITAL PROPERTIES
Semimajor Axis (a)
Orbital Period (P)
Average Orbital
Velocity (km/s)
Orbital
Inclination
Planet
(AU)
(106 km)
(v)
(days)
Eccentricity
to Ecliptic
Mercury
0.387
57.9
0.241
88.0
47.9
0.206
7.0°
Venus
0.723
108
0.615
224.7
35.0
0.007
3.4°
Earth
1.00
150
1.00
365.3
29.8
0.017
Mars
1.52
228
1.88
687.0
24.1
0.093
1.8°
Jupiter
5.20
779
11.9
4332
13.1
0.049
1.30
Saturn
9.58
1433
29.5
10,759
9.7
0.056
2.5°
30,799
60,190
Uranus
19.23
2877
84.3
6.8
0.044
0.8°
Neptune
* By definition.
30.10
4503
164.8
5.4
0.011
1.8°
PHYSICAL PROPERTIES (Earth = e)…
The half-life of carbon 14 is 5730 years [ Hint: Use the formula N(t)= N0e^k1 Answer in completesentences.
a) Find the yearly decay rate (k) of Carbon 14. Round your answer to 6 decimal places.
Chapter 17 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 17.1 - Prob. 17.1CYUCh. 17.2 - Prob. 17.2CYUCh. 17.3 - Prob. 17.3CYUCh. 17.4 - Prob. 17.4CYUCh. 17 - Prob. 1QPCh. 17 - Prob. 2QPCh. 17 - Prob. 3QPCh. 17 - Prob. 4QPCh. 17 - Prob. 5QPCh. 17 - Prob. 6QP
Ch. 17 - Prob. 7QPCh. 17 - Prob. 8QPCh. 17 - Prob. 9QPCh. 17 - Prob. 10QPCh. 17 - Prob. 11QPCh. 17 - Prob. 12QPCh. 17 - Prob. 13QPCh. 17 - Prob. 14QPCh. 17 - Prob. 15QPCh. 17 - Prob. 16QPCh. 17 - Prob. 17QPCh. 17 - Prob. 18QPCh. 17 - Prob. 19QPCh. 17 - Prob. 20QPCh. 17 - Prob. 21QPCh. 17 - Prob. 22QPCh. 17 - Prob. 23QPCh. 17 - Prob. 24QPCh. 17 - Prob. 25QPCh. 17 - Prob. 26QPCh. 17 - Prob. 27QPCh. 17 - Prob. 28QPCh. 17 - Prob. 29QPCh. 17 - Prob. 30QPCh. 17 - Prob. 31QPCh. 17 - Prob. 32QPCh. 17 - Prob. 33QPCh. 17 - Prob. 34QPCh. 17 - Prob. 35QPCh. 17 - Prob. 36QPCh. 17 - Prob. 37QPCh. 17 - Prob. 38QPCh. 17 - Prob. 39QPCh. 17 - Prob. 40QPCh. 17 - Prob. 41QPCh. 17 - Prob. 42QPCh. 17 - Prob. 43QPCh. 17 - Prob. 44QPCh. 17 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Add a fourth column to Table 13-1 and write in the atomic mass for each rows fuel element (see Appendix Table A-14). Review the curve of binding energy, Figure 8-15. Explain the trend of fusion time versus fuel atomic mass.arrow_forwardConsider a grain of sand that contains 1 mg of oxygen (a typical amount for a medium-sized sand grain, since sand is mostly SiO2). How many oxygen atoms does the grain contain? What is the radius of the sphere you would have to spread them out over if you wanted them to have the same density as the interstellar medium, about 1 atom per cm3? You can look up the mass of an oxygen atom.arrow_forwardReferring to the HR diagrams in Exercise 22.13, which diagram would more likely be the HR diagram for an association?arrow_forward
- LET US PRACTICE MORE Activity 2: How Are We Related? Direction: Complete the tables with the necessary information. Volume-Pressure Relationship VOLUME (L) PRESSURE (atm) TEMPERATURE (k) 10.00 20 4.0 20 8.0 2.50 1.25 20 Volume-Temperature Relationship VOLUME TEMPERATURE CK K-C+ 273,15 K-VIT (ml) ("c) (Use temperature in Kelvin) 25 0.09 30 330.15 375.15 0.09 40 152 0.09 10arrow_forwardA fossil contains 4.06 grams of carbon 14. Refer to the formulaA(t) = C 0.999879t which gives the original amount of carbon 14 t years ago in terms of the amount C that is left now, and estimate the amount of carbon 14 in the sample 10,000 years, 20,000 years, and 30,000 years ago. (Round your answers to one decimal place.arrow_forwardFrom Figure 8, use the following equation to calculate the strength of the PGh (in units of mb per km) if d is 250 km.arrow_forward
- An isotope of a radioactive element has half-life equal to 5 thousand years. Imagine a sample that is so old that most of its radioactive atoms have decayed, leaving just 20 percent of the initial quantity of the isotope remaining. How old is the sample? Give your answer in thousands of years, correct to one decimal place. Age : ___ thousand years.arrow_forwardConsider a neutron star as a very dense sphere of matter. Assuming that the star has a mass of 1*(mass of sun) and a radius of 0.05*(radius of sun), then how much would a 85.1 kg person weigh on the surface of this star? (enter your answer in Newtons). See the test reference sheet for applicable constants. HINT: Remember what we learned about the force of gravity and the gravitational field (Ch. 13 of the textbook)arrow_forwardA) A typical dust grain has a radius of about 0.1 micrometers and a mass of 10-14 grams. Roughly how many dust particles are in a cloud containing 1000 Msun of dusty gas if 1% of the cloud's mass is in the form of dust grains? B) What surface area would be covered by these grains if you put them side by side? Assume these grains are spherical. Answer in square light-years. C) Estimate the total surface area covered by the cloud assuming it's matter density is like that of a typical molecular cloud, about 10-21 g/cm3 (Hint: first calculate the clouds volume from it's mass and density, then determine its radius using the formula for volume of a sphere) Answer in square light-years. D) Comparing all above answers, What are the chances (very roughly) that a photon passing through the cloud will hit a dust grain?arrow_forward
- A star is formed when the gravitational attraction overcomes the pressure due to the gases inside.Thus we can write(in-picture) .... Assuming the ideal gas equation, we can write P = nkT, where n is the number of atoms/volume. Let M and m denote the total mass and the mass of each gas atom. Using the above equation, show that the condition for star formation is that the mass of the star obeys M > MJ, where : (in-picture)arrow_forwardThe difference in absolute magnitude between two objects is related to their fluxes by the flux-magnitude relation: FA / FB = 2.51(MB - MA) A distant galaxy contains a supernova with an absolute magnitude of -19. If this supernova were placed next to our Sun (M = +4.8) and you observed both of them from the same distance, how much more flux would the supernova emit than the Sun? Fsupernova / FSun = ?arrow_forwardYour Question: 5. Hence show that: au aß ) v =-3 Nhv (hv exp(-ßhv)) hv exp(-2ßhv) (1–exp(-ßhv))*(1-exp(-Blv))² + Hint 1: you will need to use the quotient rule: ƒ'(x) __yf '(x) xf '(y) = f'() (f'() (f())arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax