PRINCIPLES+REACTIONS
8th Edition
ISBN: 9781337759632
Author: Masterton
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 82QAP
A metallurgist wants to gold-plate an object with a surface area of 17.21 in2. The gold plating must be 0.00200 in. thick (assume uniform thickness).
(a) How many grams of gold
(b) How many minutes will it take to plate the object from a solution of AuCN using a current of 7.00 A? Assume 100% efficiency.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 17 Solutions
PRINCIPLES+REACTIONS
Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Balance the following half-equations. Balance (a)...Ch. 17 - Prob. 3QAPCh. 17 - Balance the following reactions in acid: (a)...Ch. 17 - Write balanced equations for the following...Ch. 17 - Write balanced equations for the following...Ch. 17 - Prob. 7QAPCh. 17 - Write balanced net ionic equations for the...Ch. 17 - Write balanced net ionic equations for the...Ch. 17 - Prob. 10QAP
Ch. 17 - Write a balanced chemical equation for the overall...Ch. 17 - Write a balanced net ionic equation for the...Ch. 17 - Draw a diagram for a salt bridge cell for each of...Ch. 17 - Follow the directions in Question 13 for the...Ch. 17 - Consider a voltaic salt bridge cell represented by...Ch. 17 - Consider a salt bridge voltaic cell represented by...Ch. 17 - Consider a salt bridge cell in which the anode is...Ch. 17 - Follow the directions in Question 17 for a salt...Ch. 17 - Prob. 19QAPCh. 17 - Which species in each pair is the stronger...Ch. 17 - Using Table 17.1, arrange the following reducing...Ch. 17 - Use Table 17.1 to arrange the following oxidizing...Ch. 17 - Consider the following species. Cr3+ Hg(l) H2...Ch. 17 - Follow the directions of Question 23 for the...Ch. 17 - For the following half-reactions, answer these...Ch. 17 - For the following half-reactions, answer the...Ch. 17 - Use Table 17.1 to select (a) a reducing agent in...Ch. 17 - Use Table 17.1 to select (a) an oxidizing agent in...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Calculate E° for the following voltaic cells: (a)...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Using Table 17.1, calculate E° for the reaction...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Calculate E° for the following cells: (a)...Ch. 17 - Suppose Ered for Ag+Ag were set equal to zero...Ch. 17 - Suppose Ered for H+H2 were taken to be 0.300 V...Ch. 17 - Which of the following reactions is/are...Ch. 17 - Which of the following reactions is(are)...Ch. 17 - Use the following half-equations to write three...Ch. 17 - Follow the directions of Question 39 for the...Ch. 17 - Use Table 17.1 to answer the following questions:...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Write the equation for the reaction, if any, that...Ch. 17 - Prob. 45QAPCh. 17 - Prob. 46QAPCh. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Use Table 17.1 to predict what reaction, if any,...Ch. 17 - Consider a cell reaction at 25°C where n=2 . Fill...Ch. 17 - Consider a cell reaction at 25°C where n=4 . Fill...Ch. 17 - For a certain cell, G=25.0 kJ. Calculate E° if n...Ch. 17 - For a certain cell, E=1.08 V. Calculate G° if n is...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate E°, G°, and K at 25°C for the reaction...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate G° at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Calculate K at 25°C for each of the reactions...Ch. 17 - Prob. 59QAPCh. 17 - Use Table 17.1 to find Kffor AuCl4- (aq) at 25°C.Ch. 17 - Prob. 61QAPCh. 17 - What is E° at 25°C for the following reaction?...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell at 25°C in which the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Calculate the voltages of the following cells at...Ch. 17 - Consider the reaction...Ch. 17 - Consider the reaction at 25°C:...Ch. 17 - Complete the following cell notation....Ch. 17 - Complete the following cell notation....Ch. 17 - Consider the reaction below at 25°C:...Ch. 17 - Consider the reaction low at 25°C:...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - Consider a cell in which the reaction is...Ch. 17 - An electrolytic cell produces aluminum from Al2O3...Ch. 17 - Prob. 78QAPCh. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A solution containing a metal ion (M2+(aq)) is...Ch. 17 - A baby's spoon with an area of 6.25 cm2 is plated...Ch. 17 - A metallurgist wants to gold-plate an object with...Ch. 17 - A lead storage battery delivers a current of 6.00...Ch. 17 - Calcium metal can be obtained by the direct...Ch. 17 - Given the following data:...Ch. 17 - In a nickel-cadmium battery (Nicad), cadmium is...Ch. 17 - Hydrogen gas is produced when water is...Ch. 17 - Consider the electrolysis of NiCl2 to Ni(s) and...Ch. 17 - An electrolysis experiment is performed to...Ch. 17 - Prob. 90QAPCh. 17 - Prob. 91QAPCh. 17 - Prob. 92QAPCh. 17 - Atomic masses can be determined by electrolysis....Ch. 17 - Consider the following reaction at 25°C:...Ch. 17 - Given the standard reduction potential for...Ch. 17 - Choose the figure that best represents the results...Ch. 17 - For the cell: Cr|Cr3+Co2+|Co E° is 0.46 V. The...Ch. 17 - Which of the changes below will increase the...Ch. 17 - The standard potential for the reduction of AgSCN...Ch. 17 - Consider the following standard reduction...Ch. 17 - Use Table 17.1 to answer the following questions....Ch. 17 - Consider three metals, X, Y, and Z, and their...Ch. 17 - An alloy made up of tin and copper is prepared by...Ch. 17 - In a fully charged lead storage battery, the...Ch. 17 - Consider a voltaic cell in which the following...Ch. 17 - In biological systems, acetate ion is converted to...Ch. 17 - Consider the cell Pt|H2|H+H+|H2|Pt In the anode...Ch. 17 - Prob. 108QAPCh. 17 - Prob. 109QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardCalcium metal can be obtained by the direct electrolysis of molten CaCl2, at a voltage of 3.2 V. (a) How many joules of electrical energy are required to obtain 12.0 1b of calcium? (b) What is the cost of the electrical energy obtained in (a) if electrical energy is sold at the rate of nine cents per kilowatt hour?arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forward
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forward
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardA voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardthe electroplating of a silver spoon, the spoon acts as thecathode and a piece of pure silver as the anode. Both dipinto a solution of silver cyanide (AgCN). Suppose that acurrent of 1.5 A is passed through such a cell for 22 minutesand that the spoon has a surface area of 16cm2. Calculatethe average thickness of the silver layer deposited onthe spoon, taking the density of silver to be 10.5gcm3.arrow_forward
- An electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forwardConsider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY