Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 17, Problem 76EAP
Two radio antennas are separated by 2.0 m. Both broadcast identical 750 MHz waves. If you walk around the antennas in a circle of radius 10 m, how many maxima will you detect?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 4: Consider the 100-MHz radio waves used in an MRI device.
Part (a) What is the wavelength, in meters, of these radio waves?
λ = 3
Part (b) If the frequencies are swept over a ±12.5 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted?
λmin =
Part (c) What is the maximum, in meters, of this wavelength range?
λmax =
During the Cold War, American submarines operated as "lone wolves" at extreme ocean depths for many months at a time.
Ordinary radio signals are greatly attenuated at such depths, making communication with the submarines difficult. One way
suggested to communicate with the submarines was a program the Navy called Seafarer that used extremely low frequency
waves. If the Seafarer transmitter broadcast at 82 Hz, what would the transmitter's quarter wavelength antenna have to be in
order to receive the signal?
km
Problem 4: Consider the 100-MHz radio waves used in an MRI device.
Part (a) What is the wavelength, in meters, of these radio waves? Part (b) If the frequencies are swept over a ±14 MHz range centered on 100 MHz, what is the minimum, in meters, of the range of wavelengths emitted?
Part (c) What is the maximum, in meters, of this wavelength range?
Chapter 17 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 17 - Prob. 1CQCh. 17 - If you take snapshots of a standing wave on a...Ch. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - 10. A trumpet player hears 5 beats per second when...
Ch. 17 - Prob. 1EAPCh. 17 - FIGURE EX17.2 is a snapshot graph at i = 0 s of...Ch. 17 - Prob. 3EAPCh. 17 - Prob. 4EAPCh. 17 - Prob. 5EAPCh. 17 - Prob. 6EAPCh. 17 - FIGURE EX17.7 shows a standing wave on a string...Ch. 17 - Prob. 8EAPCh. 17 - Prob. 9EAPCh. 17 - 10. The two highest-pitch strings on a violin are...Ch. 17 - A heavy piece of hanging sculpture is suspended by...Ch. 17 - Prob. 12EAPCh. 17 - Prob. 13EAPCh. 17 - What are the three longest wavelengths for...Ch. 17 - Prob. 15EAPCh. 17 - Prob. 16EAPCh. 17 - We can make a simple model of the human vocal...Ch. 17 - The lowest note on a grand piano has a frequency...Ch. 17 - A bass clarinet can be modeled as a 120cmlong...Ch. 17 - Prob. 20EAPCh. 17 - Prob. 21EAPCh. 17 - Prob. 22EAPCh. 17 - Two loudspeakers in a 20C room emit 686Hz sound...Ch. 17 - Prob. 24EAPCh. 17 - What is the thinnest film of MgF2(n1.39) on glass...Ch. 17 - Prob. 26EAPCh. 17 - I FIGURE EX17.27 shows the circular wave fronts...Ch. 17 - Prob. 28EAPCh. 17 - 29. Two in-phase loudspeakers, which emit sound...Ch. 17 - Two in-phase speakers 2.0m apart in a plane are...Ch. 17 - Prob. 31EAPCh. 17 - Prob. 32EAPCh. 17 - A flute player hears four beats per second when...Ch. 17 - Traditional Indonesian music uses an ensemble...Ch. 17 - Two microwave signals of nearly equal wavelengths...Ch. 17 - A 2.0mlong string vibrates at its second-harmonic...Ch. 17 - Prob. 37EAPCh. 17 - Prob. 38EAPCh. 17 - Biologists think that some spiders “tune” strands...Ch. 17 - Prob. 40EAPCh. 17 - Prob. 41EAPCh. 17 - Prob. 42EAPCh. 17 - Prob. 43EAPCh. 17 - A 75g bungee cord has an equilibrium length of...Ch. 17 - Prob. 45EAPCh. 17 - Prob. 46EAPCh. 17 - Prob. 47EAPCh. 17 - Prob. 48EAPCh. 17 - Prob. 49EAPCh. 17 - Prob. 50EAPCh. 17 - Prob. 51EAPCh. 17 - Prob. 52EAPCh. 17 - Prob. 53EAPCh. 17 - Prob. 54EAPCh. 17 - Prob. 55EAPCh. 17 - A 44-cm-diameter water tank is filled with 35 cm...Ch. 17 - Prob. 57EAPCh. 17 - Prob. 58EAPCh. 17 - Two in-phase loudspeakers emit identical 1000 Hz...Ch. 17 - Prob. 60EAPCh. 17 - Two loudspeakers emit sound waves of the same...Ch. 17 - Prob. 62EAPCh. 17 - Prob. 63EAPCh. 17 - Prob. 64EAPCh. 17 - Prob. 65EAPCh. 17 - Engineers are testing a new thin-film coating...Ch. 17 - Prob. 67EAPCh. 17 - Prob. 68EAPCh. 17 - Two loudspeakers in a plane, 5.0 m apart, are...Ch. 17 - Two identical loudspeakers separated by distance...Ch. 17 - Prob. 71EAPCh. 17 - Piano tuners tune pianos by listening to the beats...Ch. 17 - Prob. 73EAPCh. 17 - Prob. 74EAPCh. 17 - Prob. 75EAPCh. 17 - Two radio antennas are separated by 2.0 m. Both...Ch. 17 - Prob. 77EAPCh. 17 - Prob. 78EAPCh. 17 - Prob. 79EAPCh. 17 - Ultrasound has many medical applications, one of...Ch. 17 - Prob. 81EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A radio station broadcasts its radio waves with a power of 50,000 W. What would be the intensity of this signal if it is received on a planet orbiting Proxima Centuri, the closest star to our Sun, at 4.243 ly away?arrow_forwardRadio station KSON in San Diego broadcasts at both 1240 kHz (AM) and 97.3 MHz (FM). a) Which of these signals, AM or FM, has the longer wavelength? b) How long is each? Answer: [λAM = 242 m, [λFM = 3.08 m] but how do you solve for it?arrow_forwardRadio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength. What is the wavelength of 27 MHz radio waves?A. 11 m B. 9.0 m C. 0.011 m D. 0.009 marrow_forward
- Two identical sources A and B emit in-phase plane radio waves with frequency 3.17E4 Hz and intensity 1.83E2 W/m2. A detector placed at location P closer to source B than source A detects a destructive interference. What is the minimum value of the path difference |AP–BP| (in m)?arrow_forwardRadio waves and microwaves are used in therapy to provide “deep heating” of tissue because the waves penetrate beneath the surface of the body and deposit energy. We define the penetration depth as the depth at which the wave intensity has decreased to 37% of its value at the surface. The penetration depth is 15 cm for 27 MHz radio waves. For radio frequencies such as this, the penetration depth is proportional to √λ, the square root of the wavelength. For 27 MHz radio waves, the wave intensity has been reduced by a factor of 3 at a depth of approximately 15 cm. At this point in the tissue, the electric field amplitude has decreased by a factor ofA. 9 B. 3√3 C. 3 D. √3arrow_forwardProblem 12: Part (a) What is the frequency, in hertz, of the first channel? f1 = ______ Part (b) What is the frequency, in hertz, of the second channel? f2 = ______arrow_forward
- A laser beam at a wavelength of 1.11 μm is coupled into an optic fiber, resulting in 138.2 mW of light inside the fiber initially. The fiber is 4.75 km long and has an absorption coefficienct of 1.562 dB/km. What light power, in mW, is at the end of the fiber?arrow_forward(a) What would a small T.V. antenna suggest about the broadcast signal it is designed to receive?(b) A radio station in Sydney broadcasts at 9.67 MHz. What would be the length of its antenna if this is exactly half a wavelength long?arrow_forwardAM radio waves can be produced by a marconi anthenna, whose length must be one-fourth of the wave's wavelength. What must be the length, in meters, of the antenna to produce a frquency of 630kHz?arrow_forward
- Sources A and B emit long-range radio waves of wavelength 380 m, with the phase of the emission from A ahead of that from source B by 90°. The distance rA from A to a detector is greater than the corresponding distance rB from B by 140 m. What is the magnitude of the phase difference at the detector?arrow_forwardElectromagnetic wave of unknown wavelength passes through the slit of width a =3.79 µm and the first minimum is detected at angular position 0 =6.82°. What is the wavelength of the electromagnetic wave? Provide your answer in nanometers, round it to one decimal place.arrow_forwardIf electric and magnetic field strengths vary sinusoidally in time, being zero at t=0, then E=E0 sin 2πft and B=B0 Sin 2πft . Let f = 1.00 GHz here When are the field strengths first zero?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY