
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 72EAP
Piano tuners tune pianos by listening to the beats between the harmonics of two different strings. When properly tuned, the note A should have a frequency of 440 Hz and the note E should be at 659 Hz.
- What is the frequency difference between the third harmonic of the A and the second harmonic of the E?
- A tuner first tunes the A string very precisely by matching it to a 440 Hz tuning fork. She then strikes the A and E strings simultaneously and listens for beats between the harmonics. What beat frequency indicates that the E string is properly tuned?
- The tuner starts with the tension in the E string a little low, then tightens it. What is the frequency of the E string when she hears four beats per second?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Kirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown.
Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be
reverse). Use the sign convention that a potential drop is negative and a potential gain is positive.
E₂ = 8V
R₁₁ = 50
R₂ = 80
b
с
w
11
www
12
13
E₁ = 6V
R3 = 20
a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt).
b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt).
c) Apply Kirchoff's Junction Rule at junction b (1 pt).
d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current
around each loop. (5 pts)
I1 =
A
12 =
A
13 =
A
Direction of current around loop abef
Direction of current around loop bcde
(CW or CCW)
(CW or CCW)
No chatgpt pls will upvote
4.) The diagram shows the electric field lines of a positively charged conducting sphere of
radius R and charge Q.
A
B
Points A and B are located on the same field line.
A proton is placed at A and released from rest. The magnitude of the work done by the electric field in
moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of
the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere.
(a) Explain why the electric potential decreases from A to B. [2]
(b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the
sphere.
R
[2]
(c(i)) Calculate the electric potential difference between points A and B. [1]
(c(ii)) Determine the charge Q of the sphere. [2]
(d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists
developed a common terminology to describe different types of fields. [1]
Chapter 17 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 17 - Prob. 1CQCh. 17 - If you take snapshots of a standing wave on a...Ch. 17 - Prob. 3CQCh. 17 - Prob. 4CQCh. 17 - Prob. 5CQCh. 17 - Prob. 6CQCh. 17 - Prob. 7CQCh. 17 - Prob. 8CQCh. 17 - Prob. 9CQCh. 17 - 10. A trumpet player hears 5 beats per second when...
Ch. 17 - Prob. 1EAPCh. 17 - FIGURE EX17.2 is a snapshot graph at i = 0 s of...Ch. 17 - Prob. 3EAPCh. 17 - Prob. 4EAPCh. 17 - Prob. 5EAPCh. 17 - Prob. 6EAPCh. 17 - FIGURE EX17.7 shows a standing wave on a string...Ch. 17 - Prob. 8EAPCh. 17 - Prob. 9EAPCh. 17 - 10. The two highest-pitch strings on a violin are...Ch. 17 - A heavy piece of hanging sculpture is suspended by...Ch. 17 - Prob. 12EAPCh. 17 - Prob. 13EAPCh. 17 - What are the three longest wavelengths for...Ch. 17 - Prob. 15EAPCh. 17 - Prob. 16EAPCh. 17 - We can make a simple model of the human vocal...Ch. 17 - The lowest note on a grand piano has a frequency...Ch. 17 - A bass clarinet can be modeled as a 120cmlong...Ch. 17 - Prob. 20EAPCh. 17 - Prob. 21EAPCh. 17 - Prob. 22EAPCh. 17 - Two loudspeakers in a 20C room emit 686Hz sound...Ch. 17 - Prob. 24EAPCh. 17 - What is the thinnest film of MgF2(n1.39) on glass...Ch. 17 - Prob. 26EAPCh. 17 - I FIGURE EX17.27 shows the circular wave fronts...Ch. 17 - Prob. 28EAPCh. 17 - 29. Two in-phase loudspeakers, which emit sound...Ch. 17 - Two in-phase speakers 2.0m apart in a plane are...Ch. 17 - Prob. 31EAPCh. 17 - Prob. 32EAPCh. 17 - A flute player hears four beats per second when...Ch. 17 - Traditional Indonesian music uses an ensemble...Ch. 17 - Two microwave signals of nearly equal wavelengths...Ch. 17 - A 2.0mlong string vibrates at its second-harmonic...Ch. 17 - Prob. 37EAPCh. 17 - Prob. 38EAPCh. 17 - Biologists think that some spiders “tune” strands...Ch. 17 - Prob. 40EAPCh. 17 - Prob. 41EAPCh. 17 - Prob. 42EAPCh. 17 - Prob. 43EAPCh. 17 - A 75g bungee cord has an equilibrium length of...Ch. 17 - Prob. 45EAPCh. 17 - Prob. 46EAPCh. 17 - Prob. 47EAPCh. 17 - Prob. 48EAPCh. 17 - Prob. 49EAPCh. 17 - Prob. 50EAPCh. 17 - Prob. 51EAPCh. 17 - Prob. 52EAPCh. 17 - Prob. 53EAPCh. 17 - Prob. 54EAPCh. 17 - Prob. 55EAPCh. 17 - A 44-cm-diameter water tank is filled with 35 cm...Ch. 17 - Prob. 57EAPCh. 17 - Prob. 58EAPCh. 17 - Two in-phase loudspeakers emit identical 1000 Hz...Ch. 17 - Prob. 60EAPCh. 17 - Two loudspeakers emit sound waves of the same...Ch. 17 - Prob. 62EAPCh. 17 - Prob. 63EAPCh. 17 - Prob. 64EAPCh. 17 - Prob. 65EAPCh. 17 - Engineers are testing a new thin-film coating...Ch. 17 - Prob. 67EAPCh. 17 - Prob. 68EAPCh. 17 - Two loudspeakers in a plane, 5.0 m apart, are...Ch. 17 - Two identical loudspeakers separated by distance...Ch. 17 - Prob. 71EAPCh. 17 - Piano tuners tune pianos by listening to the beats...Ch. 17 - Prob. 73EAPCh. 17 - Prob. 74EAPCh. 17 - Prob. 75EAPCh. 17 - Two radio antennas are separated by 2.0 m. Both...Ch. 17 - Prob. 77EAPCh. 17 - Prob. 78EAPCh. 17 - Prob. 79EAPCh. 17 - Ultrasound has many medical applications, one of...Ch. 17 - Prob. 81EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardA rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forward
- A certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forwardA-E pleasearrow_forward
- A 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License