. The solubility product of iron(III) hydroxide is very small: K sp = 4 × 10 − 38 at 25 °C. A classical method of analysis for unknown samples containing iron is to add NaOH or NH 3 . This precipitates Fe(OH) 3 , which can then be filtered and weighed. To demonstrate that the concentration of iron remaining in solution in such a sample is very small, calculate the solubility of Fe(OH) 3 in moles per liter and in grams per liter.
. The solubility product of iron(III) hydroxide is very small: K sp = 4 × 10 − 38 at 25 °C. A classical method of analysis for unknown samples containing iron is to add NaOH or NH 3 . This precipitates Fe(OH) 3 , which can then be filtered and weighed. To demonstrate that the concentration of iron remaining in solution in such a sample is very small, calculate the solubility of Fe(OH) 3 in moles per liter and in grams per liter.
. The solubility product of iron(III) hydroxide is very small:
K
sp
=
4
×
10
−
38
at 25 °C. A classical method of analysis for unknown samples containing iron is to add NaOH or NH3. This precipitates Fe(OH)3, which can then be filtered and weighed. To demonstrate that the concentration of iron remaining in solution in such a sample is very small, calculate the solubility of Fe(OH)3in moles per liter and in grams per liter.
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Please correct answer and don't used hand raiting
need help please and thanks dont understand a-b
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal energy
Divide the…
Chapter 17 Solutions
Bundle: Introductory Chemistry: A Foundation, Loose-leaf Version, 9th + OWLv2 with MindTap Reader, 1 term (6 months) Printed Access Card
General, Organic, and Biological Chemistry - 4th edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.