Interpretation:
The correct and incorrect things in the given statements are to be indicated. The incorrect statements are to be corrected and explained.
Concept Introduction:
In a
The equilibrium constant of a reaction is expressed as the ratio of the concentration of the products and reactants, each raised to the power of their
The equilibrium constant for the above
Answer to Problem 6ALQ
The equilibrium constant for the given chemical reaction is expressed as,
At equilibrium
Substitute the value of equilibrium concentration in the above equation.
The equilibrium constant for the given chemical reaction is
Hence, the first statement is correct.
It is given that after adding the
But after the addition of
The correct statements are given below.
The possible equilibrium condition will be
The equilibrium constant for the given chemical reaction is calculated as follows:
The new equilibrium constant for the given chemical reaction will be
Explanation of Solution
The given reaction is,
At equilibrium
The equilibrium constant for the given chemical reaction is expressed as,
Substitute the value of equilibrium concentration in the above equation.
The equilibrium constant for the given chemical reaction is
Hence, the first statement is correct.
It is given that after adding the
But after the addition of
Therefore, the possible equilibrium condition will be
Hence, the second statement is incorrect.
The corrected statement is shown below.
The equilibrium constant for the given chemical reaction is expressed as,
Substitute the value of equilibrium concentration in the above equation
The new equilibrium constant for the given chemical reaction will be
Hence, the first statement is correct and second statement is incorrect.
The equilibrium constant for the given chemical reaction is expressed as,
At equilibrium
Put the value of equilibrium concentration in the above equation.
The equilibrium constant for the given chemical reaction is
Hence, the first statement is correct.
It is given that after adding the
But after the addition of
The possible equilibrium condition will be
Hence, the second statement is incorrect.
The corrected statement is shown below.
The equilibrium constant for the given chemical reaction is calculated as follows:
The new equilibrium constant for the given chemical reaction will be
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: A Foundation
- Kc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forwardFor the reactionH2(g)+I2(g)2HI(g), consider two possibilities: (a) you mix 0.5 mole of each reactant. allow the system to come to equilibrium, and then add another mole of H2 and allow the system to reach equilibrium again. or (b) you mix 1.5 moles of H2 and 0.5 mole of I2 and allow the system to reach equilibrium. Will the final equilibrium mixture be different for the two procedures? Explain.arrow_forwardFor the equilibrium 2 SO2(g) + O2(g) 2 SO3(g) Kc = 245 (at 1000 K) the equilibrium concentrations are [SO2] = 0.102, [O2] = 0.0132, and [SO3] = 0.184. The concentration of SO2 is suddenly doubled. Show that the forward reaction takes place to reach a new equilibrium.arrow_forward
- A solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forwardNitrosyl chloride, NOC1, decomposes to NO and Cl2 at high temperatures. 2 NOCl(g) ⇌ 2 NO(g) + Cl2(g) Suppose you place 2.00 mol NOC1 in a 1.00–L flask, seal it, and raise the temperature to 462 °C. When equilibrium has been established, 0.66 mol NO is present. Calculate the equilibrium constant Kc for the decomposition reaction from these data.arrow_forwardFor the reaction C(s)+CO2(g)2CO(g) K=168 at 1273 K. If one starts with 0.3 atm of CO2 and 12.0 g of C at 1273 K, will the equilibrium mixture contain (a) mostly CO2? (b) mostly CO? (c) roughly equal amounts of CO2 and CO? (d) only C?arrow_forward
- Consider 0.200 mol phosphorus pentachloride sealed in a 2.0-L container at 620 K. The equilibrium constant, Kc, is 0.60 for PCl5(g) PCl3(g) + Cl2(g) Calculate the concentrations of all species after equilibrium has been reached.arrow_forwardIn Section 13.1 of your text, it is mentioned that equilibrium is reached in a closed system. What is meant by the term closed system. and why is it necessary to have a closed system in order for a system to reach equilibrium? Explain why equilibrium is not reached in an open system.arrow_forwardAt 2300 K the equilibrium constant for the formation of NO(g) is 1.7 103. N2(g) + O2(g) 2 NO(g) (a) Analysis shows that the concentrations of N2 and O2 are both 0.25 M, and that of NO is 0.0042 M under certain conditions. Is the system at equilibrium? (b) If the system is not at equilibrium, in which direction does the reaction proceed? (c) When the system is at equilibrium, what are the equilibrium concentrations?arrow_forward
- Sulfur oxychloride, SO2Cl2, decomposes to sulfur dioxide and chlorine gases. SO2Cl2(g)SO2(g)+Cl2(g) At a certain temperature, the equilibrium partial pressures of SO2, Cl2, and SO2Cl2 are 1.88 atm, 0.84 atm, and 0.27 atm, respectively. (a) What is K at that temperature? (b) Enough Cl2 condenses to reduce its partial pressure to 0.68 atm. What are the partial pressures of all gases when equilibrium is reestablished?arrow_forwardThe atmosphere consists of about 80% N2 and 20% O2, yet there are many oxides of nitrogen that are stable and can be isolated in the laboratory. (a) Is the atmosphere at chemical equilibrium with respect to forming NO? (b) If not, why doesnt NO form? If so, how is it that NO can be made and kept in the laboratory for long periods?arrow_forwardIn a 3.0-L vessel, the following equilibrium partial pressures are measured: N2, 190 torr; H2, 317 torr; NH3, 1.00103 torr. N2(g)+3H2(g)2NH3(g) (a) How will the partial pressures of H2, N2, and NH3 change if H2 is removed from the system? Will they increase, decrease, or remain the same? (b) Hydrogen is removed from the vessel until the partial pressure of nitrogen, at equilibrium, is 250 torr. Calculate the partial pressures of the other substances under the new conditions.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning