![Introductory Chemistry: A Foundation](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_largeCoverImage.gif)
Concept explainers
Interpretation:
The amphoteric nature of water is to be explained. The chemical equation for the autoionization of water and the expression for the equilibrium constant,
Concept Introduction:
The substances which have ability to accept a proton as well as to donate a proton are known as amphoteric substances. The partially dissociation of a liquid into its ions is known as autoionization reaction.
![Check Mark](/static/check-mark.png)
Answer to Problem 5CR
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The value of
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the concentration of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Explanation of Solution
According to Bronsted-Lowry concept, the stronger base (than water) has tendency to accept the proton from the water. In the reaction of ammonia and water, here, water donates a proton to ammonia and acts as an acid. The corresponding chemical reaction is shown below.
Similarly, the stronger acid (than water) has tendency to donate a proton to water. In the reaction of water and hydrochloric acid, the water accepts a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Hence, water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is as follows:
The value of
Therefore, the concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ions.
According to Bronsted-Lowry concept, the base (stronger than water) has tendency to accept the proton from the water. Similarly, an acid (stronger than water) has tendency to donate a proton to water.
In the reaction of ammonia and water, ammonia will accept a proton from water and acts as a base and water donates a proton and acts as an acid. The corresponding chemical reaction is shown below.
In the reaction of water and hydrochloric acid, water will accept a proton from hydrochloric acid and acts as a base. The corresponding chemical reaction is shown below.
Both the above reactions show that water is an amphoteric substance.
The chemical equation for the autoionization of water is shown below.
The equilibrium constant for the above reaction is,
The concentration of
The hydrolysis of an acid results in the formation of hydrogen ions while the hydrolysis of a base results in the formation of the hydroxyl ions. In the acidic solution, the concentration of hydrogen ions is greater than the number of hydroxide ion. While in basic solution, the concentration of hydroxyl ion is greater than the concentration of the hydrogen ion.
Want to see more full solutions like this?
Chapter 17 Solutions
Introductory Chemistry: A Foundation
- Please answer the questions and provide detailed explanations.arrow_forwardShow reaction mechanism. Don't give Ai generated solutionarrow_forwardPlease answer the questions and provide detailed explanation. Please also include the Hydrogens that are on the molecule to show how many signals there are.arrow_forward
- Capp aktiv.com Part of Speech Table for Assi x Aktiv Learning App K Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 232 of 10 10: Mg Select to Add Arrows Br O H :0 CI:O H Mg THE + dy Undo Reset Done Brarrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forwardNeed help with witharrow_forward
- Please answer the questions and provide detailed explanations.arrow_forwardsolve pleasearrow_forwardPlease answer the question and provide a detailed drawing of the structure. If there will not be a new C – C bond, then the box under the drawing area will be checked. Will the following reaction make a molecule with a new C – C bond as its major product: Draw the major organic product or products, if the reaction will work. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry.arrow_forward
- Please do not use AI. AI cannot "see" the molecules properly, and it therefore gives the wrong answer while giving incorrect descriptions of the visual images we're looking at. All of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forwardPlease answer the question and provide detailed explanations.arrow_forwardAll of these compounds would be produced (I think). In my book, I don't see any rules about yield in this case, like explaining that one product would be present in less yield for this reason or that reason. Please explain why some of these produce less yield than others.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079250/9781305079250_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)