Chemistry 2012 Student Edition (hard Cover) Grade 11
12th Edition
ISBN: 9780132525763
Author: Prentice Hall
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 56A
Interpretation Introduction
Interpretation: The property that describes heat change at constant pressure is to be named and discussed.
Concept Introduction: Chemical and physical reactions are usually carried in an open atmosphere and thus, all of them occur at constant pressure. Thus, all the heat changes are also measured at constant pressure.
Expert Solution & Answer
Answer to Problem 56A
The property that describes heat change at constant pressure is enthalpy.
Explanation of Solution
The enthalpy of a system is defined as the total heat content of the system at constant pressure. It is used to account for the heat transfer which happens between the system and the surroundings.
Chapter 17 Solutions
Chemistry 2012 Student Edition (hard Cover) Grade 11
Ch. 17.1 - Prob. 1SPCh. 17.1 - Prob. 2SPCh. 17.1 - Prob. 3SPCh. 17.1 - Prob. 4SPCh. 17.1 - Prob. 5LCCh. 17.1 - Prob. 6LCCh. 17.1 - Prob. 7LCCh. 17.1 - Prob. 8LCCh. 17.1 - Prob. 9LCCh. 17.1 - Prob. 10LC
Ch. 17.1 - Prob. 11LCCh. 17.2 - Prob. 12SPCh. 17.2 - Prob. 13SPCh. 17.2 - Prob. 14SPCh. 17.2 - Prob. 15SPCh. 17.2 - Prob. 16LCCh. 17.2 - Prob. 17LCCh. 17.2 - Prob. 18LCCh. 17.2 - Prob. 19LCCh. 17.2 - Prob. 20LCCh. 17.2 - Prob. 21LCCh. 17.3 - Prob. 22SPCh. 17.3 - Prob. 23SPCh. 17.3 - Prob. 24SPCh. 17.3 - Prob. 25SPCh. 17.3 - Prob. 26SPCh. 17.3 - Prob. 27SPCh. 17.3 - Prob. 28LCCh. 17.3 - Prob. 29LCCh. 17.3 - Prob. 30LCCh. 17.3 - Prob. 31LCCh. 17.3 - Prob. 32LCCh. 17.3 - Prob. 33LCCh. 17.3 - Prob. 34LCCh. 17.4 - Prob. 35SPCh. 17.4 - Prob. 36SPCh. 17.4 - Prob. 37LCCh. 17.4 - Prob. 38LCCh. 17.4 - Prob. 39LCCh. 17.4 - Prob. 40LCCh. 17.4 - Prob. 41LCCh. 17 - Prob. 42ACh. 17 - Prob. 44ACh. 17 - Prob. 45ACh. 17 - Prob. 46ACh. 17 - Prob. 47ACh. 17 - Prob. 48ACh. 17 - Prob. 49ACh. 17 - Prob. 50ACh. 17 - Prob. 51ACh. 17 - Prob. 52ACh. 17 - Prob. 53ACh. 17 - Prob. 54ACh. 17 - Prob. 55ACh. 17 - Prob. 56ACh. 17 - Prob. 57ACh. 17 - Prob. 58ACh. 17 - Prob. 59ACh. 17 - Prob. 60ACh. 17 - Prob. 61ACh. 17 - Prob. 62ACh. 17 - Prob. 63ACh. 17 - Prob. 64ACh. 17 - Prob. 65ACh. 17 - Prob. 66ACh. 17 - Prob. 67ACh. 17 - Prob. 68ACh. 17 - Prob. 69ACh. 17 - Prob. 70ACh. 17 - Prob. 71ACh. 17 - Prob. 72ACh. 17 - Prob. 73ACh. 17 - Prob. 74ACh. 17 - Prob. 75ACh. 17 - Prob. 76ACh. 17 - Prob. 77ACh. 17 - Prob. 78ACh. 17 - Prob. 79ACh. 17 - Prob. 80ACh. 17 - Prob. 81ACh. 17 - Prob. 82ACh. 17 - Prob. 83ACh. 17 - Prob. 84ACh. 17 - Prob. 85ACh. 17 - Prob. 86ACh. 17 - Prob. 87ACh. 17 - Prob. 88ACh. 17 - Prob. 89ACh. 17 - Prob. 90ACh. 17 - Prob. 91ACh. 17 - Prob. 92ACh. 17 - Prob. 93ACh. 17 - Prob. 94ACh. 17 - Prob. 95ACh. 17 - Prob. 96ACh. 17 - Prob. 97ACh. 17 - Prob. 98ACh. 17 - Prob. 99ACh. 17 - Prob. 100ACh. 17 - Prob. 101ACh. 17 - Prob. 102ACh. 17 - Prob. 103ACh. 17 - Prob. 104ACh. 17 - Prob. 105ACh. 17 - Prob. 106ACh. 17 - Prob. 107ACh. 17 - Prob. 108ACh. 17 - Prob. 109ACh. 17 - Prob. 110ACh. 17 - Prob. 111ACh. 17 - Prob. 112ACh. 17 - Prob. 113ACh. 17 - Prob. 114ACh. 17 - Prob. 115ACh. 17 - Prob. 116ACh. 17 - Prob. 117ACh. 17 - Prob. 118ACh. 17 - Prob. 119ACh. 17 - Prob. 120ACh. 17 - Prob. 1STPCh. 17 - Prob. 2STPCh. 17 - Prob. 3STPCh. 17 - Prob. 4STPCh. 17 - Prob. 5STPCh. 17 - Prob. 6STPCh. 17 - Prob. 7STPCh. 17 - Prob. 8STPCh. 17 - Prob. 9STPCh. 17 - Prob. 10STP
Knowledge Booster
Similar questions
- An essential part of the experimental design process is to select appropriate dependent and independent variables. True Falsearrow_forward10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.) Calculate the standard heat of formation of Compound X at 25 °C. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.arrow_forwardneed help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forward
- Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).arrow_forwardThe name of the following molecule is: Νarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY