a.
To find: The function
The function that models the cost of producing
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
Calculation:
Multiply the number of rackets with the price of each unstrung racket and add fixed overhead costs to get the function that models the cost of producing unstrung rackets as follows:
Conclusion:
The function that models the cost of producing
b.
To find: The function
The function that models the cost of producing
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
Calculation:
Multiply the number of rackets with the price of each strung racket and add fixed overhead costs to get the function that models the cost of producing unstrung rackets as follows:
Conclusion:
The function that models the cost of producing
c.
To find: The function
The function modelling the revenue generated by selling
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
The selling price of one unstrung racket is $56. So, the selling price of
Therefore, the function modelling the revenue generated by selling
Conclusion:
The revenue function is
d.
To find: The function
The function modelling the revenue generated by selling
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
The selling price of one unstrung racket is $79. So, the selling price of
Therefore, the function modelling the revenue generated by selling
Conclusion:
The revenue function is
e.
To graph: The functions
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Graph:
Use a graphing tool to draw the graph of the functions as shown below.
Interpretation:
Selling strung rackets generates more revenue than selling unstrung rackets.
f.
To write: whether the company should manufacture unstrung or strung rackets.
The company should manufacture strung rackets.
Given information:
The cost of making each unstrung racket is $23 and total of $125000 in fixed overhead costs.
The price of an unstrung racket is $56 and the price of a strung racket is $79.
Calculation:
Consider the graph drawn in part (e).
From the graph it can be observed that the revenue generated by selling strung rackets is more than revenue generated by unstrung rackets. Thus, it is recommended to manufacture strung rackets.
Conclusion:
Selling strung rackets generates more revenue than selling unstrung rackets.
Chapter 1 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- The graph of f(x) is given below. Select all of the true statements about the continuity of f(x) at x = −3. -7-6- -5- +1 23456 1 2 3 4 5 67 Select the correct answer below: ○ f(x) is not continuous at x = f(x) is not continuous at x = f(x) is not continuous at x = f(x) is continuous at x = -3 -3 because f(-3) is not defined. -3 because lim f(x) does not exist. 2-3 -3 because lim f(x) = f(−3). 2-3arrow_forwardCould you explain how this was solved, I don’t understand the explanation before the use of the shift property As well as the simplification afterwardsarrow_forwardQuestion The function f(x) is shown in the graph below. Which of the following statements are true? Select all that apply. f(x) 12 10 -16 -14 -12 -10 -8 + -4 " 10 12 14 16 a Select all that apply: ☐ Condition 1 is satisfied. ☐ Condition 2 is satisfied. ☐ Condition 3 is satisfied. ☐ f(x) is continuous.arrow_forward
- Find the equation of the line / in the figure below. Give exact values using the form y = mx + b. m = b = y WebAssign Plot f(x) = 10* log 9 Xarrow_forwardA particle travels along a straight line path given by s=9.5t3-2.2t2-4.5t+9.9 (in meters). What time does it change direction? Report the higher of the answers to the nearest 2 decimal places in seconds.arrow_forwardUse the method of disks to find the volume of the solid that is obtained when the region under the curve y = over the interval [4,17] is rotated about the x-axis.arrow_forward
- 1. Find the area of the region enclosed between the curves y = x and y = x. Sketch the region.arrow_forwardfor the given rectangular coordinates, find two sets of polar coordinates for which 0≤θ<2π, one with r>0 and the other with r<0. (-2sqrt(3),9)arrow_forwardI circled the correct answer, could you show me how to do it using divergence and polar coordinatesarrow_forward
- The correct answer is D Could you explain and show the steps pleasearrow_forwardTaylor Series Approximation Example- H.W More terms used implies better approximation f(x) 4 f(x) Zero order f(x + 1) = f(x;) First order f(x; + 1) = f(x;) + f'(x;)h 1.0 Second order 0.5 True f(x + 1) = f(x) + f'(x)h + ƒ"(x;) h2 2! f(x+1) 0 x; = 0 x+1 = 1 x h f(x)=0.1x4-0.15x³- 0.5x2 -0.25x + 1.2 51 Taylor Series Approximation H.w: Smaller step size implies smaller error Errors f(x) + f(x,) Zero order f(x,+ 1) = f(x) First order 1.0 0.5 Reduced step size Second order True f(x + 1) = f(x) + f'(x)h f(x; + 1) = f(x) + f'(x)h + "(xi) h2 f(x,+1) O x₁ = 0 x+1=1 Using Taylor Series Expansion estimate f(1.35) with x0 =0.75 with 5 iterations (or & s= 5%) for f(x)=0.1x 0.15x³-0.5x²- 0.25x + 1.2 52arrow_forwardCould you explain this using the formula I attached and polar coorindatesarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning