Concept explainers
a.
To find: The
The scatter plot of the data is shown below.
Given:
The data of subscriber and number of revenue per person is shown below.
Year | No of subscribers | Average revenue per subscriber |
2000 | 109.5 | 48.55 |
2001 | 128.4 | 49.79 |
2002 | 140.8 | 51 |
2003 | 158.7 | 51.55 |
2004 | 182.1 | 52.54 |
2005 | 207.9 | 50.65 |
2006 | 233 | 49.07 |
2007 | 255.4 | 49.26 |
2008 | 270.3 | 48.87 |
2009 | 285.6 | 47.97 |
2010 | 296.3 | 47.53 |
2011 | 316 | 46.11 |
2012 | 326.5 | 48.99 |
2013 | 335.7 | 48.79 |
2014 | 355.4 | 46.64 |
2015 | 377.9 | 44.65 |
Calculation:
The scatter plot of the data of subscribers’ verses time is shown below.
The scatter plot of the data of average monthly income verses time is shown below.
b.
To find: The slope intercept form of line for one of the scatter plots which is linear.
The slope intercept form of line is
Given:
The data of subscriber and number of revenue per person is shown below.
Year | No of subscribers | Average revenue per subscriber |
2000 | 109.5 | 48.55 |
2001 | 128.4 | 49.79 |
2002 | 140.8 | 51 |
2003 | 158.7 | 51.55 |
2004 | 182.1 | 52.54 |
2005 | 207.9 | 50.65 |
2006 | 233 | 49.07 |
2007 | 255.4 | 49.26 |
2008 | 270.3 | 48.87 |
2009 | 285.6 | 47.97 |
2010 | 296.3 | 47.53 |
2011 | 316 | 46.11 |
2012 | 326.5 | 48.99 |
2013 | 335.7 | 48.79 |
2014 | 355.4 | 46.64 |
2015 | 377.9 | 44.65 |
The
Formula used:
Calculation:
From the graphs of subscribers verses time and average monthly revenue per subscriber verses time the graph of subscribers verses time is linear.
Calculation of slope intercepts form of line for number of subscribers.
Taking
Substitute the values in the formula
Substitute the value of
Substitute the values of
c.
To find: The best fit line and scatter plot on the same graph.
The graph representing the scatter plot and the best fit line is shown below.
Given:
The data of subscriber and number of revenue per person is shown below.
Year | No of subscribers | Average revenue per subscriber |
2000 | 109.5 | 48.55 |
2001 | 128.4 | 49.79 |
2002 | 140.8 | 51 |
2003 | 158.7 | 51.55 |
2004 | 182.1 | 52.54 |
2005 | 207.9 | 50.65 |
2006 | 233 | 49.07 |
2007 | 255.4 | 49.26 |
2008 | 270.3 | 48.87 |
2009 | 285.6 | 47.97 |
2010 | 296.3 | 47.53 |
2011 | 316 | 46.11 |
2012 | 326.5 | 48.99 |
2013 | 335.7 | 48.79 |
2014 | 355.4 | 46.64 |
2015 | 377.9 | 44.65 |
Observation:
The graph of subscriber verses time and average monthly revenue per subscriber verses time the best fit line fits appropriately to the graph of subscribers verses time.
d.
To find: The pattern that the graph of subscribers verses time with best fit line follow.
Some points are left after the best fit has been drawn with the help of scatter points.
Given:
The data of subscriber and number of revenue per person is shown below.
Year | No of subscribers | Average revenue per subscriber |
2000 | 109.5 | 48.55 |
2001 | 128.4 | 49.79 |
2002 | 140.8 | 51 |
2003 | 158.7 | 51.55 |
2004 | 182.1 | 52.54 |
2005 | 207.9 | 50.65 |
2006 | 233 | 49.07 |
2007 | 255.4 | 49.26 |
2008 | 270.3 | 48.87 |
2009 | 285.6 | 47.97 |
2010 | 296.3 | 47.53 |
2011 | 316 | 46.11 |
2012 | 326.5 | 48.99 |
2013 | 335.7 | 48.79 |
2014 | 355.4 | 46.64 |
2015 | 377.9 | 44.65 |
Observation:
The graph of subscriber verses time with best fit line is shown below.
From the graph it is clear that some points are left out after drawing the best fit line with the help of scatter plot points.
e.
To find: The trend that the average monthly revenue per subscriber follows from
The decreasing and increasing pattern of revenue tells that the market the price will rose and fall according to the demand and supply.
Given:
The data of subscriber and number of revenue per person is shown below.
Year | No of subscribers | Average revenue per subscriber |
2000 | 109.5 | 48.55 |
2001 | 128.4 | 49.79 |
2002 | 140.8 | 51 |
2003 | 158.7 | 51.55 |
2004 | 182.1 | 52.54 |
2005 | 207.9 | 50.65 |
2006 | 233 | 49.07 |
2007 | 255.4 | 49.26 |
2008 | 270.3 | 48.87 |
2009 | 285.6 | 47.97 |
2010 | 296.3 | 47.53 |
2011 | 316 | 46.11 |
2012 | 326.5 | 48.99 |
2013 | 335.7 | 48.79 |
2014 | 355.4 | 46.64 |
2015 | 377.9 | 44.65 |
Observation:
From the table it is clearly visible that the average monthly revenue per subscriber follows a pattern that is decreasing and after
Chapter 1 Solutions
PRECALCULUS:GRAPHICAL,...-NASTA ED.
- 4. Evaluate the following integrals. Show your work. a) -x b) f₁²x²/2 + x² dx c) fe³xdx d) [2 cos(5x) dx e) √ 35x6 3+5x7 dx 3 g) reve √ dt h) fx (x-5) 10 dx dt 1+12arrow_forwardI just need help with evaluating these limits.arrow_forward3. Differentiate the following functions. Show your work where applicable. a) y = e³x b) f(x)=2 cos(5x) c) y = 1 - 2 d) y = In|secx| e) f(t) = t² e√t f) f(x) = 1+x x sin x 3arrow_forward
- Rylee's car is stuck in the mud. Roman and Shanice come along in a truck to help pull her out. They attach one end of a tow strap to the front of the car and the other end to the truck's trailer hitch, and the truck starts to pull. Meanwhile, Roman and Shanice get behind the car and push. The truck generates a horizontal force of 377 lb on the car. Roman and Shanice are pushing at a slight upward angle and generate a force of 119 lb on the car. These forces can be represented by vectors, as shown in the figure below. The angle between these vectors is 20.2°. Find the resultant force (the vector sum), then give its magnitude and its direction angle from the positive x-axis. 119 lb 20.2° 377 lbarrow_forwardAn airplane flies due west at an airspeed of 428 mph. The wind blows in the direction of 41° south of west at 50 mph. What is the ground speed of the airplane? What is the bearing of the airplane?arrow_forwardA vector with magnitude 5 points in a direction 190 degrees counterclockwise from the positive x axis. Write the vector in component form, and show your answers accurate to 3 decimal places.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning