
College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 42GP
Figure P17.42 shows the light intensity on a screen 2.5 m behind a double slit. The
Figure P17.42
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Two blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic
energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest.
]
37°
A
©
B
A skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so
that his center of mass moves through one quarter of a circle of radius 6.20 m.
i
(a) Find his speed at the bottom of the half-pipe (point Ⓡ).
m/s
(b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he
passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ?
]
(c) How high above point ① does he rise?
m
A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical.
(a) Neglecting friction, find the child's speed at the lowest position.
m/s
(b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction?
]
Chapter 17 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 17 - The frequency of a light wave in air is 5.3 1014...Ch. 17 - Rank in order the following according to their...Ch. 17 - The wavelength of a light wave is 700 nm in air;...Ch. 17 - A double-slit interference experiment shows...Ch. 17 - Figure Q17.5 shows the fringes observed in a...Ch. 17 - In a double-slit interference experiment,...Ch. 17 - Figure Q17.7 shows the viewing screen in a...Ch. 17 - Figure Q17.7 is the interference pattern seen on a...Ch. 17 - Figure Q17.9 shows the light intensity on a...Ch. 17 - Figure Q17.10 shows the light intensity on a...
Ch. 17 - Light with a wavelength of 600 nm is incident on a...Ch. 17 - White light is incident on a diffraction grating....Ch. 17 - Figure Q17.13 shows a light wave incident on and...Ch. 17 - A soap bubble usually pops because some part of it...Ch. 17 - An oil film on top of water has one patch that is...Ch. 17 - Should the antireflection coating of a microscope...Ch. 17 - Example 17.5 showed that a thin film whose...Ch. 17 - Prob. 18CQCh. 17 - Prob. 19MCQCh. 17 - The frequency of a light wave in air is 4.6 1014...Ch. 17 - Light passes through a diffraction grating with a...Ch. 17 - Blue light of wavelength 450 nm passes through a...Ch. 17 - Yellow light of wavelength 590 nm passes through a...Ch. 17 - Light passes through a 10-m-wide slit and is...Ch. 17 - Prob. 25MCQCh. 17 - You want to estimate the diameter of a very small...Ch. 17 - Prob. 1PCh. 17 - a. How long (in ns) does it take light to travel...Ch. 17 - A 5.0-cm-thick layer of oil (n = 1.46) is...Ch. 17 - A light wave has a 670 nm wavelength in air. Its...Ch. 17 - How much time does it take a pulse of light to...Ch. 17 - A helium-neon laser beam has a wavelength in air...Ch. 17 - Two narrow slits 50 m apart are illuminated with...Ch. 17 - Light from a sodium lamp (= 589 nm) illuminates...Ch. 17 - Two narrow slits are illuminated by light of...Ch. 17 - A double-slit experiment is performed with light...Ch. 17 - Light from a helium-neon laser (= 633 nm) is used...Ch. 17 - Two narrow slits are 0.12 mm apart. Light of...Ch. 17 - In a double-slit experiment, the distance from one...Ch. 17 - A diffraction grating with 750 slits/mm is...Ch. 17 - A 1.0-cm-wide diffraction grating has 1000 slits....Ch. 17 - Light of wavelength 600 nm illuminates a...Ch. 17 - A lab technician uses laser light with a...Ch. 17 - The human eye can readily detect wavelengths from...Ch. 17 - A diffraction grating with 600 lines/mm is...Ch. 17 - A 500 line/mm diffraction grating is illuminated...Ch. 17 - What is the thinnest film of MgF2 (n = 1.38) on...Ch. 17 - A very thin oil film (n = 1.25) floats on water (n...Ch. 17 - A film with n = 1.60 is deposited on glass. What...Ch. 17 - Antireflection coatings can be used on the inner...Ch. 17 - Solar cells are given antireflection coatings to...Ch. 17 - A thin film of MgF2 (n = 1.38) coats a piece of...Ch. 17 - Looking straight downward into a rain puddle whose...Ch. 17 - A helium-neon laser (= 633 nm) illuminates a...Ch. 17 - For a demonstration, a professor uses a razor...Ch. 17 - A 0.50-mm-wide slit is illuminated by light of...Ch. 17 - The second minimum in the diffraction pattern of a...Ch. 17 - What is the width of a slit for which the first...Ch. 17 - A 0.50-mm-diameter hole is illuminated by light of...Ch. 17 - Light from a helium-neon laser (= 633 nm) passes...Ch. 17 - You want to photograph a circular diffraction...Ch. 17 - Infrared light of wavelength 2.5 m illuminates a...Ch. 17 - An advanced computer sends information to its...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Figure P17.38 shows the light intensity on a...Ch. 17 - Your friend has been given a laser for her...Ch. 17 - A double slit is illuminated simultaneously with...Ch. 17 - Figure P17.42 shows the light intensity on a...Ch. 17 - A laser beam of wavelength 670 nm shines through a...Ch. 17 - The two most prominent wavelengths in the light...Ch. 17 - A diffraction grating produces a first-order...Ch. 17 - A diffraction grating is illuminated...Ch. 17 - White light (400-700 nm) is incident on a 600...Ch. 17 - A miniature spectrometer used for chemical...Ch. 17 - Figure P17.49 shows the interference pattern on a...Ch. 17 - Figure P17.4919 shows the interference pattern on...Ch. 17 - Because sound is a wave, it is possible to make a...Ch. 17 - The shiny surface of a CD is imprinted with...Ch. 17 - If sunlight shines straight onto a peacock...Ch. 17 - The wings of some beetles have closely spaced...Ch. 17 - A diffraction grating having 500 lines/mm...Ch. 17 - Light emitted by element X passes through a...Ch. 17 - Light of a single wavelength is incident on a...Ch. 17 - A sheet of glass is coated with a 500-nm-thick...Ch. 17 - A soap bubble is essentially a thin film of water...Ch. 17 - A laboratory dish, 20 cm in diameter, is half...Ch. 17 - You need to use your cell phone, which broadcasts...Ch. 17 - Light from a sodium lamp ( = 589 nm) illuminates a...Ch. 17 - The opening to a cave is a tall, 30-cm-wide crack....Ch. 17 - A diffraction grating has 500 slits/mm. What is...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.65 shows the light intensity on a...Ch. 17 - Figure P17.67 shows the light intensity on a...Ch. 17 - One day, after pulling down your window shade, you...Ch. 17 - Prob. 70GPCh. 17 - A helium-neon laser ( = 633 nm), shown in Figure...Ch. 17 - In the laser range-finding experiments of Example...Ch. 17 - Prob. 73MSPPCh. 17 - Prob. 74MSPPCh. 17 - Prob. 75MSPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Which type of cartilage is most plentiful in the adult body?
Anatomy & Physiology (6th Edition)
Choose the best answer to each of the following. Explain your reasoning. Which of the following provides eviden...
Cosmic Perspective Fundamentals
Name the components (including muscles) of the thoracic cage. List the contents of the thorax.
Human Physiology: An Integrated Approach (8th Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forwardPhysics different from a sea breeze from a land breezearrow_forward
- File Preview Design a capacitor for a special purpose. After graduating from medical school you and a friend take a three hour cruise to celebrate and end up stranded on an island. While looking for food, a spider falls on your friend giving them a heart attack. Recalling your physics, you realize you can build a make-shift defibrillator by constructing a capacitor from materials on the boat and charging it using the boat's battery. You know that the capacitor must hold 100 J of energy and be at 1000 V (fortunately this is an electric boat which has batteries that are 1000 V) to work. You decide to construct the capacitor by tightly sandwiching a single layer of Saran wrap between sheets of aluminum foil. You read the Saran wrap box and fortunately they tell you that it has a thickness 0.01 mm and dielectric constant of 2.3. The Saran wrap and foil are 40 cm wide and very long. How long is the final capacitor you build that saves your friend?arrow_forwardHow do I plot the force F in Matlba (of gravity pulling on the masses) versus spring displacement, and fit the data with a linear function to find the value for the spring constant. To get a linear fit, use polynomial order 1. Report the value of 'k' from the fit. What code is used?arrow_forwardOk im confused on this portion of the questions being asked. the first snip is the solution you gave which is correct. BUt now it is asking for this and im confused. The magnitude of the force F_11 is __________LB. The direction of the force F_11 is __________LB.arrow_forward
- Solve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forwardThe spring in the figure has a spring constant of 1300 N/m. It is compressed 17.0 cm, then launches a 200 g block. The horizontal surface is frictionless, but the block’s coefficient of kinetic friction on the incline is 0.200. What distance d does the block sail through the air?arrow_forwardSolve and answer the problem correctly and be sure to check your work. Thank you!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY