EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 39PCE
A piano wire 0.82 m long and 0.93 mm in diameter is fixed on one end. The other end is wrapped around a tuning peg 3.5 mm in diameter. Initially the wire, whose Young’s modulus is 2.4 × 1010 N/m2, has a tension of 14 N. Find the tension in the wire after the tuning peg has been turned through one complete revolution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is T?
A particular human hair has a Young's modulus of 3.31 x 10° N/m2 and a diameter of 145 um.
If a 236 g object is suspended by the single strand of hair that
is originally 17.5 cm long, by how much AL bair will the hair
AL
hair =
m
stretch?
If the same object were hung from an aluminum wire of the
same dimensions as the hair, by how much ALAI would the
ALA =
aluminum stretch?
If the strand of hair is modeled as a spring, what is its spring
N/m
constant khair?
khair =
An 10.3-kg stone at the end of a steel (Young's modulus 2.0 x 1011 N/m?) wire is being whirled in a circle at a constant tangential speed of 10.0 m/s. The stone is moving on the surface of a frictionless horizontal table. The wire is 4.54 m long and has a radius of 3.56 x 10-3m. Find the strain in the wire.
Chapter 17 Solutions
EBK PHYSICS
Ch. 17.1 - Rank the following ideal-gas systems in order of...Ch. 17.2 - If the Kelvin temperature of a gas is doubled, by...Ch. 17.3 - A metal rod of a given initial length and...Ch. 17.4 - A portion of a substances phase diagram is shown...Ch. 17.5 - Which requires more heat: melting 100 kg of copper...Ch. 17.6 - An ice cube is placed in a cup of water. A few...Ch. 17 - How is the air pressure in a tightly sealed house...Ch. 17 - The average speed of air molecules in your room is...Ch. 17 - Is it possible to change both the pressure and the...Ch. 17 - Prob. 4CQ
Ch. 17 - A camping stove just barely boils water on a...Ch. 17 - An autoclave is a device used to sterilize medical...Ch. 17 - As the temperature of ice is increased, it changes...Ch. 17 - BIO Isopropyl alcohol is sometimes rubbed onto a...Ch. 17 - A drop of water on a kitchen counter evaporates in...Ch. 17 - (a) Is the number of molecules in one mole of N2...Ch. 17 - Predict/Explain If you put a helium-filled balloon...Ch. 17 - Two containers hold ideal gases at the same...Ch. 17 - Prob. 4PCECh. 17 - BIO After emptying her lungs, a person inhales 4.3...Ch. 17 - An automobile tire has a volume of 0.0185 m3. At a...Ch. 17 - Prob. 7PCECh. 17 - A compressed-air tank holds 0.500 m3 of air at a...Ch. 17 - Four ideal gases have the following pressures, P,...Ch. 17 - A balloon contains 3.9 liters of nitrogen gas at a...Ch. 17 - Prob. 11PCECh. 17 - Predict/Calculate A bicycle tire with a volume of...Ch. 17 - A 515-cm3 flask contains 0.460 g of a gas at a...Ch. 17 - Prob. 14PCECh. 17 - The air inside a hot-air balloon has an average...Ch. 17 - Prob. 16PCECh. 17 - Consider the system described in the previous...Ch. 17 - Prob. 18PCECh. 17 - Prob. 19PCECh. 17 - If the translational speed of molecules in an...Ch. 17 - At what temperature is the rms speed of H2 equal...Ch. 17 - Suppose a planet has an atmosphere of pure ammonia...Ch. 17 - Prob. 23PCECh. 17 - Prob. 24PCECh. 17 - Prob. 25PCECh. 17 - What is the temperature of a gas of CO2 molecules...Ch. 17 - The rms speed of a sample of gas is increased by...Ch. 17 - Prob. 28PCECh. 17 - A 380-mL spherical flask contains 0.065 mol of an...Ch. 17 - Prob. 30PCECh. 17 - A rock climber hangs freely from a nylon rope that...Ch. 17 - BIO To stretch a relaxed biceps muscle 2.5 cm...Ch. 17 - A 22-kg chimpanzee hangs from the end of a...Ch. 17 - The Marianas Trench The deepest place in all the...Ch. 17 - Four cylindrical rods with various cross-sectional...Ch. 17 - Predict/Calculate A steel wire 4.1 m long...Ch. 17 - BIO Spiderweb An orb weaver spider with a mass of...Ch. 17 - Predict/Calculate Two rods of equal length (0.55...Ch. 17 - A piano wire 0.82 m long and 0.93 mm in diameter...Ch. 17 - The formation of ice from water is accompanied by...Ch. 17 - Vapor Pressure for Water Figure 17-35 shows a...Ch. 17 - Using the vapor-pressure curve given in Figure...Ch. 17 - Prob. 43PCECh. 17 - Prob. 44PCECh. 17 - Predict/Calculate The Vapor Pressure of CO2 A...Ch. 17 - Phase Diagram for Water The phase diagram for...Ch. 17 - Phase Diagram for CO2 The phase diagram for CO2 is...Ch. 17 - Prob. 48PCECh. 17 - How much heat must be removed from 1.96 kg of...Ch. 17 - A heat transfer of 9.5 105 J is required to...Ch. 17 - How much heat must be added to 2.55 kg of copper...Ch. 17 - An ammonia refrigeration cycle involves the...Ch. 17 - Prob. 53PCECh. 17 - Prob. 54PCECh. 17 - Prob. 55PCECh. 17 - Figure 17-30 shows a temperature-versus-heat plot...Ch. 17 - Predict/Calculate Suppose the 1.000 kg of water in...Ch. 17 - Prob. 58PCECh. 17 - When you go out to your car one cold winter...Ch. 17 - A large punch bowl holds 3.99 kg of lemonade...Ch. 17 - A 155-g aluminum cylinder is removed from a liquid...Ch. 17 - An 825-g iron block is heated to 352 C and placed...Ch. 17 - Party Planning You are expecting to serve 32 cups...Ch. 17 - Predict/Calculate A 35-g ice cube at 0.0 C is...Ch. 17 - A 48-g block of copper at 12 C is added to 110 g...Ch. 17 - A 0 075-kg ice cube at 0.0 C is dropped into a...Ch. 17 - To help keep her barn warm on cold days, a farmer...Ch. 17 - CE As you go up in attitude, do you expect the...Ch. 17 - Prob. 69GPCh. 17 - Prob. 70GPCh. 17 - Prob. 71GPCh. 17 - Cooling Computers Researchers are developing heat...Ch. 17 - Prob. 73GPCh. 17 - Prob. 74GPCh. 17 - Evaporating Atmosphere Hydrogen gas evaporates...Ch. 17 - Prob. 76GPCh. 17 - A Boiling Geyser (a) The column of water that...Ch. 17 - A Melting Glacier (a) A glacier is made of ice of...Ch. 17 - Peter catches a 4 2-kg striped bass on a fishing...Ch. 17 - A steel ball (density=7860kg/m3) with a diameter...Ch. 17 - A lead brick with the dimensions shown in Figure...Ch. 17 - (a) Find the amount of heat that must be extracted...Ch. 17 - Mighty Ice Lift A tremendous force is generated...Ch. 17 - Orthopedic Implants Metals such as titanium and...Ch. 17 - Students on a spring break picnic bring a cooler...Ch. 17 - A 5.9-kg block of ice at 1.5 C slides on a...Ch. 17 - A cylindrical copper rod 37 cm long and 7.5 cm in...Ch. 17 - Prob. 88PPCh. 17 - Prob. 89PPCh. 17 - Prob. 90PPCh. 17 - Prob. 91PPCh. 17 - Referring to Example 17-17 (a) Find the final...Ch. 17 - Referring to Example 17-17 (a) Find the final...
Additional Science Textbook Solutions
Find more solutions based on key concepts
57. If astronomers look toward any point in outer space, they see radiation that matches the emission spectrum ...
College Physics: A Strategic Approach (3rd Edition)
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
In mechanism, photophosphorylation is most similar to A. substrate-level phosphorylation in glycolysis. B. oxid...
Campbell Biology in Focus (2nd Edition)
22. A rock is tossed straight up from ground level with a speed of 20 m/s. When it returns, it falls into a hol...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
What type of culture medium would increase the size of a bacterial capsule?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A brass wire and a steel wire, both of the same length, are extended by 1.0 mm under the same force. Is the cross-sectional radius of the brass wire more, less, or equal to the cross-sectional radius of the steel wire? Explain. Youngs moduli for brass and steel are 1.0 1010 N/m2 and 2.0 1011 N/m2, respectively.arrow_forwardIn Example 14.3, we found that one of the steel cables supporting an airplane at the Udvar-Hazy Center was under a tension of 9.30 103 N. Assume the cable has a diameter of 2.30 era and an initial length of 8.00 m before the plane is suspended on the cable. How much longer is the cable when the plane is suspended on it?arrow_forwardWhy is the following situation impossible? A worker in a factory pulls a cabinet across the floor using a rope as shown in Figure P12.36a. The rope make an angle = 37.0 with the floor and is tied h1 = 10.0 cm from the bottom of the cabinet. The uniform rectangular cabinet has height = 100 cm and width w = 60.0 cm, and it weighs 400 N. The cabinet slides with constant speed when a force F = 300 N is applied through the rope. The worker tires of walking backward. He fastens the rope to a point on the cabinet h2 = 65.0 cm off the floor and lays the rope over his shoulder so that he can walk forward and pull as shown in Figure P12.36b. In this way, the rope again makes an angle of = 37.0 with the horizontal and again has a tension of 300 N. Using this technique, the worker is able to slide the cabinet over a long distance on the floor without tiring. Figure P12.36 Problems 36 and 44.arrow_forward
- A horizontal, rigid bar of negligible weight is fixed against a vertical wall at one end and supported by a vertical string at the other end. The bar has a length of 50.0 cm and is used to support a hanging block of weight 400.0 N from a point 30.0 cm from the wall as shown in Figure P14.81. The string is made from a material with a tensile strength of 1.2 108 N/m2. Determine the largest diameter of the string for which it would still break. FIGURE P14.81arrow_forwardProblems 33 and 34 are paired. One end of a uniform beam that weighs 2.80 102 N is attached to a wall with a hinge pin. The other end is supported by a cable making the angles shown in Figure P14.33. Find the tension in the cable. FIGURE P14.33 Problems 33 and 34.arrow_forwardAn aluminium (=2.7g/cm3) wire is suspended from the ceiling and hangs vertically. How long must the wire be before the stress at its upper end reaches the proportionality limit, which is 8.0107N/m2 ?arrow_forward
- A piano wire 0.82 m long and 0.93 mm in diameter is fixedon one end. The other end is wrapped around a tuning peg3.5 mm in diameter. Initially the wire, whose Young’s modulusis 2.4 * 1010 N>m2, has a tension of 14 N. Find the tension in thewire after the tuning peg has been turned through one completerevolution.arrow_forwardA 330 gram ball is attached to one end of a rubber (Young's Modulus= 0.120 GN/m2) wire of diameter 1.32 mm and an unstretched length of 83.0 cm. The other end of the wire is attached to the top of a post. The ball rotates around the post in a horizontal plane such that the angle between the wire and the horizontal is 10.5 degrees. Find the tension in the wire and the increase in the wire's length due to the tension in the wire. Tension 17.75 Vo N %3D ALength = cmarrow_forwardA particular human hair has a Young's modulus of 3.65×109 N/m2 and a diameter of 155 μm. If a 259 g object is suspended by the single strand of hair that is originally 18.5 cm18.5 cm long, by how much Δ? hair will the hair stretch? Δ? hair= mm If the same object were hung from an aluminum wire of the same dimensions as the hair, by how much Δ?Al would the aluminum stretch? Δ?Al= mm If the strand of hair is modeled as a spring, what is its spring constant ?hair? ?hair= N/marrow_forward
- A particular human hair has a Young's modulus of 3.51 x 10° N/m² and a diameter of 152 µm. If a 209 g object is suspended by the single strand of hair that is originally 19.5 cm long, by how much AL hair will the hair stretch? If the same object were hung from an aluminum wire of the same dimensions as the hair, by how much ALAI would the aluminum stretch? If the strand of hair is modeled as a spring, what is its spring constant khair? AL hair ALAI = Khair 11 6.82 x10-3 Incorrect 3.66 X10-4 Incorrect 372.6 Incorrect m m N/marrow_forwardAn 11.0-kg stone at the end of a steel (Young's modulus 2.0 x 1011 N/m2) wire is being whirled in a circle at a constant tangential speed of 19.5 m/s. The stone is moving on the surface of a frictionless horizontal table. The wire is 3.69 m long and has a radius of 2.95 x 103 m. Find the strain in the wire. Number Unitsarrow_forwardA particular human hair has a Young's modulus of 3.63×109 N/m2 and a diameter of 145 μm. If a 228 g object is suspended by the single strand of hair that is originally 20.0 cm long, by how much Δ? hairΔL hair will the hair stretch? If the same object were hung from an aluminum wire of the same dimensions as the hair, by how much Δ?AlΔLAl would the aluminum stretch? If the strand of hair is modeled as a spring, what is its spring constant ?hair?khair?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Stress and Strain; Author: The Efficient Engineer;https://www.youtube.com/watch?v=aQf6Q8t1FQE;License: Standard YouTube License, CC-BY