Concept explainers
(a)
To determine: The reason of using CoA derivatives rather than free fatty acids in experiments by scientists.
Introduction:
Trans fats are those unsaturated fats that have trans double bonds. The β-oxidation of fatty acid is a catabolic process in which fatty acid molecules are broken down to release acetyl-CoA. To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently.
(a)

Explanation of Solution
Explanation:
To explore the difference between same sized isomers of cis and trans beta oxidation, scientists used related fatty acids of 18 carbons. They incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through high-performance liquid chromatography (HPLC).
In cytoplasm, free fatty acids are usually transformed into their coenzyme A derivatives before being transported into mitochondria in the form of
(b)
To determine: The reason why no lower molecular weight CoA derivatives were found in the reaction with stearoyl-CoA.
Introduction:
To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently. To explore the difference between same sized isomers of cis and tarns beta oxidation, they used three related fatty acids of 18 carbons: stearoyl-CoA, oleoyl-CoA, andelaidoyl-CoA.
(b)

Explanation of Solution
Explanation:
When scientists incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through HPLC, they found that no CoA derivatives of low molecular weight was obtained by the reaction with stearoyl-CoA .
Through beta oxidation, stearoyl-CoA is converted into nine molecules of acetyl-CoA. All the intermediate molecules reacted immediately and thus are not observed at detectable levels.
(c)
To determine: The round of beta oxidation which would be required to convert the oleoyl-CoA and elaidoyl-CoA to cis-∆5-tetradecenoyl-CoA and trans-∆5-tetradecenoyl-CoA, respectively.
Introduction:
The effect of trans fats on health was investigated by some scientists. They presented a model of trans fatty acid whose cis isomer was processed differently. To explore the difference between same sized isomers of cis and tarns beta oxidation, they used three related fatty acids of 18 carbons: stearoyl-CoA, oleoyl-CoA, and elaidoyl-CoA.
(c)

Explanation of Solution
Explanation:
Total two rounds of beta oxidation would be required to convert the 18 carbon oleoyl-CoA and elaidoyl-CoA to 14 carbon compound cis-∆5-tetradecenoyl-CoA andtrans-∆5-tetradecenoyl-CoA, respectively.
These 18 carbon fatty acids are converted to 14 carbon fatty acids through two rounds of beta oxidation. Each round removes two atoms of carbon from them that leads to release of two molecules of acetyl-CoA.
(d)
To explain: The possible explanation for the observation that “for LCAD, the Km differs dramatically for the cis and trans substrates” in terms of structures of the substrate molecules.
Introduction:
The kinetic parameters of two forms of acetyl-CoA dehydrogenase: LCAD and VLCAD, were measured by Yu and his coworkers. They used three derivatives of coenzyme A of fatty acids: tetradecenoyl-CoA, cis-∆5-tetradecenoyl-CoAand trans-∆5-tetradecenoyl-CoA.
(d)

Explanation of Solution
Explanation:
Scientists measured the kinetic parameters of long-chain acyl-CoA dehydrogenase (LCAD) and very long-chain acyl-CoA dehydrogenase (VLCAD). They observed that for LCAD there is difference between the Km for cis and trans substrates. Km indicates the substrate concentration at which the enzyme achieves half Vmax (maximum
The Km for trans isomers were higher as compared to cis isomers. This is because the structure of cis isomers allows them to bind better to the enzyme as compared to trans isomers. Thus high concentration of trans isomer would be required for similar rate of breakdown.
(e)
To determine: The evidence that support the given assumption “the kinetic parameter of the two enzymes are relevant to the differential processing of these fatty acids only if LCAD or VLCAD reaction is the rate-limiting step in the pathway”.
Introduction:
The kinetic parameters of two forms of acyl-CoA dehydrogenase: LCAD and VLCAD, were measured by scientists. They used three derivatives of coenzyme A of fatty acids: tetradecenoyl-CoA, cis-∆5-tetradecenoyl-CoAandtrans-∆5-tetradecenoyl-CoA.
(e)

Explanation of Solution
Explanation:
When scientists measured the kinetic parameters of LCAD and VLCAD, they made an assumption stating that: “the kinetic parameter of the two enzymes are relevant to the differential processing of these fatty acids only if LCAD or VLCAD reaction is the rate-limiting step in the pathway”.
The evidence that supports this assumption is observed by the different build up of substrates of LCAD and VLCAD. The accumulation of a particular LCAD or VLCAD substrates provides evidence that they are the rate limiting steps in pathway.
(f)
To determine: The way in which the different kinetic parameters explain the different levels of the coenzyme A derivatives found after incubation of rat liver mitochondria with stearoyl-CoA, oleoyl-CoA , and elaidoyl-CoA
Introduction:
To explore the difference between same sized isomers of cis and tarns beta oxidation, scientists used related fatty acids of 18 carbons. They incubated derivatives of coenzyme A of each acid along with rat liver mitochondria and separated remaining derivatives of coenzyme A in each mixture through HPLC.
(f)

Explanation of Solution
Explanation:
The kinetic parameter indicates that trans isomer is not a well substrate for LCAD as compared to cis form. This is because the structure of cis isomers allows them to bind better to the enzyme as compared to trans isomers. The kinetic parameters for LCAD do not show much difference. As trans isomer is not a well substrate it will be accumulated in high levels as compared to cis forms.
(g)
To describe: The pathway that led to extra mitochondrial trans-∆5-tetradecenoic acid and also indicate where in the cell the various transformations take place along with the enzymes that catalyzes the transformations.
Introduction:
Yu and his coworkers determined the substrate specificity of rat’s mitochondrial thioesterase enzyme. This enzymes hydrolyzes acyl-CoA into free fatty acids andCoA. Other researchers suggested that free fatty acids can cross membranes. The scientist’s observed trans-∆5-tetradecenoic acid outside the mitochondria, which was incubated with elaidoyl-CoA.
(g)

Explanation of Solution
Explanation:
The one possible pathway that led to extra mitochondrial trans-∆5-tetradecenoic acid is as follows:
1. Elaidoyl-CoA is found outside the mitochondria and is converted into elaidoyl carnitine by carnitine acyltransferase I enzyme. Later elaidoyl carnitine is transported inside the mitochondria.
2. Elaidoyl carnitine which is now inside mitochondria is converted to elaidoyl-CoA inside the mitochondria by carnitine acyltransferase II enzyme.
3. Elaidoyl-CoA after undergoing two rounds of beta oxidation is converted into 5-trans-tetradecenyl-CoA inside the mitochondria.
4. 5-trans-tetradecenyl-CoA (inside) is converted into 5-trans-tetradecenoic acid (inside mitochondria) through thioesterase enzyme. Finally, 5-trans-tetradecenoic acid which is present inside the mitochondria diffuses out from the mitochondria.
(h)
To determine: The sense in which the statement “trans fats are not broken down by your cells and instead accumulate in your body” is correct and in what sense is it an oversimplification.
Introduction:
Trans fats are those unsaturated fats that have trans double bonds. The β-oxidation of fatty acid is a catabolic process in which fatty acid molecules are broken down to release acetyl-CoA. To investigate the effect of trans fats on health, scientists presented a model trans fatty acid whose cis isomer was processed differently.
(h)

Explanation of Solution
Explanation:
It is correct to say that trans fats are accumulated in the body as the efficiency of trans fat breakdown is very low. Due to which they could leak out of the mitochondria and could accumulate in the body.
It is incorrect to say that cells cannot breakdown trans fats. The rate of their breakdown is much slower than those of cis fats but they are broken down by the cells.
Want to see more full solutions like this?
Chapter 17 Solutions
SAPLINGPLUS FOR PRINCIPLES OF BIOCHEMIS
- MISSED THIS? Read Section 19.9 (Pages 878-881); Watch IWE 19.10 Consider the following reaction: CH3OH(g) CO(g) + 2H2(g) (Note that AG,CH3OH(g) = -162.3 kJ/mol and AG,co(g)=-137.2 kJ/mol.) Part A Calculate AG for this reaction at 25 °C under the following conditions: PCH₂OH Pco PH2 0.815 atm = 0.140 atm 0.170 atm Express your answer in kilojoules to three significant figures. Ο ΑΣΦ AG = -150 Submit Previous Answers Request Answer □? kJ × Incorrect; Try Again; 2 attempts remaining Calculate the free energy change under nonstandard conditions (AGrxn) by using the following relationship: AGrxn = AGrxn + RTInQ, AGxn+RTInQ, where AGxn is the standard free energy change, R is the ideal gas constant, T is the temperature in kelvins, a is the reaction quotient. Provide Feedback Next >arrow_forwardIdentify and provide a brief explanation of Gas Chromatography (GC) within the context of chemical analysis of food. Incorporate the specific application name, provide a concise overview of sample preparation methods, outline instrumental parameters and conditions ultilized, and summarise the outcomes and findings achieved through this analytical approach.arrow_forwardIdentify and provide a concise explanation of the concept of signal-to-noise ratio (SNR) in the context of chemical analysis. Provide specific examples.arrow_forward
- Identify and provide a concise explanation of a specific analytical instrument capable of detecting and quantifying trace compounds in food samples. Emphasise the instrumental capabilities relevant to trace compound analysis in the nominated food. Include the specific application name (eg: identification and quantification of mercury in salmon), outline a brief description of sample preparation procedures, and provide a summary of the obtained results from the analytical process.arrow_forwardIdentify and provide an explanation of what 'Seperation Science' is. Also describe its importance with the respect to the chemical analysis of food. Provide specific examples.arrow_forward5. Propose a Synthesis for the molecule below. You may use any starting materials containing 6 carbons or less (reagents that aren't incorporated into the final molecule such as PhзP do not count towards this total, and the starting material can have whatever non-carbon functional groups you want), and any of the reactions you have learned so far in organic chemistry I, II, and III. Your final answer should show each step separately, with intermediates and conditions clearly drawn. H3C CH3arrow_forward
- State the name and condensed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forwardState the name and condensed formula of the isothiazole obtained by reacting acetylacetone and thiosemicarbazide.arrow_forwardProvide the semi-developed formula of isooxazole obtained by reacting acetylacetone and hydroxylamine.arrow_forward
- Given a 1,3-dicarbonyl compound (R1-CO-CH2-CO-R2), indicate the formula of the compound obtaineda) if I add hydroxylamine (NH2OH) to give an isooxazole.b) if I add thiosemicarbazide (NH2-CO-NH-NH2) to give an isothiazole.arrow_forwardAn orange laser has a wavelength of 610 nm. What is the energy of this light?arrow_forwardThe molar absorptivity of a protein in water at 280 nm can be estimated within ~5-10% from its content of the amino acids tyrosine and tryptophan and from the number of disulfide linkages (R-S-S-R) between cysteine residues: Ε280 nm (M-1 cm-1) ≈ 5500 nTrp + 1490 nTyr + 125 nS-S where nTrp is the number of tryptophans, nTyr is the number of tyrosines, and nS-S is the number of disulfide linkages. The protein human serum transferrin has 678 amino acids including 8 tryptophans, 26 tyrosines, and 19 disulfide linkages. The molecular mass of the most dominant for is 79550. Predict the molar absorptivity of transferrin. Predict the absorbance of a solution that’s 1.000 g/L transferrin in a 1.000-cm-pathlength cuvet. Estimate the g/L of a transferrin solution with an absorbance of 1.50 at 280 nm.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





