Foundations of College Chemistry, Binder Ready Version
15th Edition
ISBN: 9781119083900
Author: Morris Hein, Susan Arena, Cary Willard
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 22RQ
Interpretation Introduction
Interpretation:
Decrease in density of electrolyte in lead storage battery in discharge cycle has to be explained.
Concept Introduction:
In lead-acid battery, negative plate is composed of lead whereas positive plate consists of lead dioxide. This battery contains concentrated
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Foundations of College Chemistry, Binder Ready Version
Ch. 17.1 - Prob. 17.1PCh. 17.1 - Prob. 17.2PCh. 17.1 - Prob. 17.3PCh. 17.1 - Prob. 17.4PCh. 17.2 - Prob. 17.5PCh. 17.3 - Prob. 17.6PCh. 17.3 - Prob. 17.7PCh. 17.4 - Prob. 17.8PCh. 17.5 - Prob. 17.9PCh. 17 - Prob. 1RQ
Ch. 17 - Prob. 2RQCh. 17 - Prob. 3RQCh. 17 - Prob. 4RQCh. 17 - Prob. 5RQCh. 17 - Prob. 6RQCh. 17 - Prob. 7RQCh. 17 - Prob. 8RQCh. 17 - Prob. 9RQCh. 17 - Prob. 10RQCh. 17 - Prob. 12RQCh. 17 - Prob. 13RQCh. 17 - Prob. 14RQCh. 17 - Prob. 15RQCh. 17 - Prob. 16RQCh. 17 - Prob. 17RQCh. 17 - Prob. 18RQCh. 17 - Prob. 19RQCh. 17 - Prob. 20RQCh. 17 - Prob. 21RQCh. 17 - Prob. 22RQCh. 17 - Prob. 23RQCh. 17 - Prob. 24RQCh. 17 - Prob. 25RQCh. 17 - Prob. 1PECh. 17 - Prob. 2PECh. 17 - Prob. 3PECh. 17 - Prob. 4PECh. 17 - Prob. 5PECh. 17 - Prob. 6PECh. 17 - Prob. 7PECh. 17 - Prob. 8PECh. 17 - Prob. 9PECh. 17 - Prob. 10PECh. 17 - Prob. 11PECh. 17 - Prob. 12PECh. 17 - Prob. 13PECh. 17 - Prob. 14PECh. 17 - Prob. 15PECh. 17 - Prob. 16PECh. 17 - Prob. 17PECh. 17 - Prob. 18PECh. 17 - Prob. 19PECh. 17 - Prob. 20PECh. 17 - Prob. 21AECh. 17 - Prob. 22AECh. 17 - Prob. 23AECh. 17 - Prob. 24AECh. 17 - Prob. 25AECh. 17 - Prob. 26AECh. 17 - Prob. 27AECh. 17 - Prob. 28AECh. 17 - Prob. 29AECh. 17 - Prob. 30AECh. 17 - Prob. 31AECh. 17 - Prob. 32AECh. 17 - Prob. 33AECh. 17 - Prob. 34AECh. 17 - Prob. 35AECh. 17 - Prob. 36AECh. 17 - Prob. 37AECh. 17 - Prob. 38AECh. 17 - Prob. 39AECh. 17 - Prob. 40AECh. 17 - Prob. 41AECh. 17 - Prob. 42AECh. 17 - Prob. 43AECh. 17 - Prob. 44AECh. 17 - Prob. 45AECh. 17 - Prob. 46AECh. 17 - Prob. 47AECh. 17 - Prob. 48AECh. 17 - Prob. 49AECh. 17 - Prob. 50CECh. 17 - Prob. 51CECh. 17 - Prob. 52CECh. 17 - Prob. 53CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Use the data from the table of standard reduction potentials in Appendix H to calculate the standard potential of the cell based on each of the following reactions. In each case, state whether the reaction proceeds spontaneously as written or spontaneously in the reverse direction under standard-state conditions. (a) H2(g)+Cl2(g)2H+(aq)+2Cl(aq) (b) Al3+(aq)+3Cr2+(aq)Al(s)+3Cr3+(aq) (c) Fe2+(aq)+Ag+(aq)Fe3+(aq)+Ag(s)arrow_forwardGive the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forward• write and balance half-reactions for simple redox processes.arrow_forward
- The mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardFor each reaction listed, determine its standard cell potential at 25 C and whether the reaction is spontaneous at standard conditions. (a) Mn(s)+Ni2+(aq)Mn2+(aq)+Ni(s) (b) 3Cu2+(aq)+2Al(s)2Al3+(aq)+3Cu(s) (c) Na(s)+LiNO3(aq)NaNO3(aq)+Li(s) (d) Ca(NO3)2(aq)+Ba(s)Ba(NO3)2(aq)+Ca(s)arrow_forwardA potassium chloride solution is electrolyzed by passing a current through the solution using inert electrodes. A gas evolves at each electrode, and there is a large increase in pH of the solution. Write the half-reactions that occur at the anode and at the cathode.arrow_forward
- Galvanized steel pipes are used in the plumbing of many older homes. When copper plumbing is added to a system consisting of galvanized steel pipes it is necessary to place an insulator between the copper and the steel to avoid corrosion. Write a balanced oxidation-reduction equation for the reaction that occurs if the pipes are directly connected. What is the standard potential between the metals?arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardThe following two half-reactions arc involved in a voltaic cell. At standard conditions, what species is produced at each electrode? Ag++eAgE=0.80VNi2++2eNiE=0.25Varrow_forward
- In principle, a battery could be made from aluminum metal and chlorine gas. (a) Write a balanced equation for the reaction thatwould occur in a battery using Al3+(aq) | Al(s) andCl2(g) | Cl(aq) half-cells. (b) Identify the half-reaction at the anode and at the cathode. Do electrons flow from the Al electrode when thecell does work? Explain. (c) Calculate the standard potential, Ecell, for the battery.arrow_forwardthe electroplating of a silver spoon, the spoon acts as thecathode and a piece of pure silver as the anode. Both dipinto a solution of silver cyanide (AgCN). Suppose that acurrent of 1.5 A is passed through such a cell for 22 minutesand that the spoon has a surface area of 16cm2. Calculatethe average thickness of the silver layer deposited onthe spoon, taking the density of silver to be 10.5gcm3.arrow_forwardThe standard potential of the cell reaction Ag+(aq)+Eu2+(aq)Ag(s)+Eu3+(aq) is E = +1.23 V. Use the tabulated standard potential of the silver half-reaction to find the standard reduction potential for the europium half-reaction.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY