Concept explainers
(a)
Interpretation:
Oxidation number of
Concept Introduction:
Oxidation number is integer value allotted to every element. It is formal charge occupied by atom if all of its bonds are dissociated heterolytically. Below mentioned are rules to assign oxidation numbers to various elements.
1. Elements present in their free state have zero oxidation number.
2. Oxidation number of hydrogen is generally
3. Oxidation number of oxygen is
4. Metals have positive oxidation numbers.
5. Negative oxidation numbers are assigned to most electronegative element in covalent compounds.
6. Sum of oxidation numbers of different elements in neutral atom is zero.
7. Sum of oxidation numbers of various elements in polyatomic ion is equal to charge present on ion.
(b)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
(c)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
(d)
Interpretation:
Oxidation number of
Concept Introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Foundations of College Chemistry, Binder Ready Version
- Xenon trioxide, XeO3, reacts with aqueous base to form the xenate anion, HXeO4. This ion reacts further with OH to form the perxenate anion, XeO64, in the following reaction: 2HXeO4(aq)+2OH(aq)XeO64(aq)+Xe(g)+O2(g)+2H2O(l) Identify the elements that are oxidized and reduced in this reaction. You will note that the equation is balanced with respect to the number of atoms on either side. Verify that the redox part of this equation is also balanced, that is, that the extents of oxidation and reduction are also equal.arrow_forwardConsider the reaction between oxygen (O2) gas and magnesium metal to form magnesium oxide. Using oxidation states, how many electrons would each oxygen atom gain, and how many electrons would each magnesium atom lose? How many magnesium atoms are needed to react with one oxygen molecule? Write a balanced equation for this reaction.arrow_forwardConsider the iron alloy described in Question 19. Suppose it is desired to prepare 1.00 kg of this alloy, what mass of each component would be necessary?arrow_forward
- The Ostwald process for the commercial production of nitric acid involves the Following three steps: 4NH3(g)+5O2(g)4NO(g)+6H2O(s)2NO(g)+O2(g)2NO2(g)3NO2(g)+H2O(l)2HNO3(aq)+NO(g) a. Which reaction in the Ostwald process are oxidation-reduction reactions? b. Identify each oxidizing agent and reducing agent.arrow_forwardWrite the net ionic equation for the reaction, if any, that occurs on mixing (a) solutions of sodium hydroxide and magnesium chloride. (b) solutions of sodium nitrate and magnesium bromide. (c) magnesium metal and a solution of hydrochloric acid to produce magnesium chloride and hydrogen. Magnesium metal reacting with HCl.arrow_forwardA common experiment to determine the relative reactivity of metallic elements is to place a pure sample of one metal into an aqueous solution of a compound of another metallic element. If the pure metal you are adding is more reactive than the metallic element in the compound, then the pure metal willreplacethe metallic element in the compound. For example. if you place a piece of pure zinc metal into a solution of copper(II) sulfate, the zinc will slowly dissolve to produce zinc sulfate solution, and the copper(II) ion of the copper(II) sulfate will be converted to metallic copper. Write the unbalanced equation for this process.arrow_forward
- Gold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardThe element tin often occurs in nature as the oxide, SnO2 . To produce pure tin metal from this sort of tin ore, the ore usually is heated with coal (carbon). This produces pure molten tin, with the carbon being removed from the reaction system as the gaseous byproduct carbon monoxide. Write the unbalanced equation for this process.arrow_forward
- The Hall process is an important method by which pure aluminum is prepared from its oxide (alumina, Al2O3 ) by indirect reaction with graphite (carbon). Balance the following equation, which is a simplified representation of this process. m:math>Al2O3(s)+C(s)Al(s)+CO2(g)arrow_forwardA transition metal X forms an oxide of formula X2O3. It is found that only 50% of X atoms in this compound are in the +3 oxidation state. The only other stable oxidation states of X are +2 and +5. What percentage of X atoms are in the +2 oxidation state in this compound?arrow_forwardA common demonstration in chemistry courses involves adding a tiny speck of manganese(IV) oxide to a concentrated hydrogen peroxide (H2O2) solution. Hydrogen peroxide decomposes quite spectacularly under these conditions to produce oxygen gas and steam (water vapor). Manganese(IV) oxide is a catalyst for the decomposition of hydrogen peroxide and is not consumed in the reaction. Write the balanced equation for the decomposition reaction of hydrogen peroxide.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning