Hot Air in a Physics Lecture. (a) A typical student listening attentively to a physics lecture has a heat output of 100 W. How much heat energy does a class of 140 physics students release into a lecture hall over the course of a 50-min lecture? (b) Assume that all the heat energy in part (a) is transferred to the 3200 m 3 of air in the room. The air has specific heat 1020J/kg·K and density 1.20 kg/m 3 . If none of the heat escapes and the air conditioning system is off, how much will the temperature of the air in the room rise during the 50-min lecture? (c) If the class is taking an exam, the heat output per student rises to 280 W. What is the temperature rise during 50 min in this case?
Hot Air in a Physics Lecture. (a) A typical student listening attentively to a physics lecture has a heat output of 100 W. How much heat energy does a class of 140 physics students release into a lecture hall over the course of a 50-min lecture? (b) Assume that all the heat energy in part (a) is transferred to the 3200 m 3 of air in the room. The air has specific heat 1020J/kg·K and density 1.20 kg/m 3 . If none of the heat escapes and the air conditioning system is off, how much will the temperature of the air in the room rise during the 50-min lecture? (c) If the class is taking an exam, the heat output per student rises to 280 W. What is the temperature rise during 50 min in this case?
Hot Air in a Physics Lecture. (a) A typical student listening attentively to a physics lecture has a heat output of 100 W. How much heat energy does a class of 140 physics students release into a lecture hall over the course of a 50-min lecture? (b) Assume that all the heat energy in part (a) is transferred to the 3200 m3 of air in the room. The air has specific heat 1020J/kg·K and density 1.20 kg/m3. If none of the heat escapes and the air conditioning system is off, how much will the temperature of the air in the room rise during the 50-min lecture? (c) If the class is taking an exam, the heat output per student rises to 280 W. What is the temperature rise during 50 min in this case?
Use the following information to answer the next question.
Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of
42°. The ray of light reflects off mirror B and then enters water, as shown below:
Incident
ray at A
Note: This diagram is not to
scale.
a
Air (n = 1.00)
Water (n = 1.34)
1) Determine the angle of refraction of the ray of light in the water.
B
Hi can u please solve
6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter
and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at
infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens
is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to
calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length
of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis
tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from
diffraction limited, with a spot size of more than 100 microns.
Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert
one extra line at the top of the merit function. Assign the…
Chapter 17 Solutions
University Physics with Modern Physics (14th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.