The K c for the reaction, 4NH 3(g) +3O 2(g) ⇌ 2N 2(g) + 6H 2 O (g) has to be calculated. Concept Introduction: Equilibrium constant ( K c ) : Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
The K c for the reaction, 4NH 3(g) +3O 2(g) ⇌ 2N 2(g) + 6H 2 O (g) has to be calculated. Concept Introduction: Equilibrium constant ( K c ) : Equilibrium constant ( K c ) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction . Consider the reaction where A reacts to give B. aA ⇌ bB Rate of forward reaction = Rate of reverse reaction k f [ A ] a =k r [ B ] b On rearranging, [ B ] b [ A ] a = k f k r =K c Where, k f is the rate constant of the forward reaction. k r is the rate constant of the reverse reaction. K c is the equilibrium constant.
Definition Definition Study of the speed of chemical reactions and other factors that affect the rate of reaction. It also extends toward the mechanism involved in the reaction.
Chapter 17, Problem 17.55P
Interpretation Introduction
Interpretation:
The Kc for the reaction, 4NH3(g) +3O2(g)⇌ 2N2(g) + 6H2O(g) has to be calculated.
Concept Introduction:
Equilibrium constant(Kc):
Equilibrium constant (Kc) is the ratio of the rate constants of the forward and reverse reactions at a given temperature. In other words it is the ratio of the concentrations of the products to concentrations of the reactants. Each concentration term is raised to a power, which is same as the coefficients in the chemical reaction.
Consider the reaction where A reacts to give B.
aA⇌bB
Rate of forward reaction = Rate of reverse reactionkf[A]a=kr[B]b
Using the graphs could you help me explain the answers. I assumed that both graphs are proportional to the inverse of time, I think. Could you please help me.
Synthesis of Dibenzalacetone
[References]
Draw structures for the carbonyl electrophile and enolate nucleophile that react to give the enone below.
Question 1
1 pt
Question 2
1 pt
Question 3
1 pt
H
Question 4
1 pt
Question 5
1 pt
Question 6
1 pt
Question 7
1pt
Question 8
1 pt
Progress:
7/8 items
Que Feb 24 at
You do not have to consider stereochemistry.
. Draw the enolate ion in its carbanion form.
• Draw one structure per sketcher. Add additional sketchers using the drop-down menu in the bottom right corner.
⚫ Separate multiple reactants using the + sign from the drop-down menu.
?
4
Shown below is the mechanism presented for the formation of biasplatin in reference 1 from the Background and Experiment document. The amounts used of each reactant are shown. Either draw or describe a better alternative to this mechanism. (Note that the first step represents two steps combined and the proton loss is not even shown; fixing these is not the desired improvement.) (Hints: The first step is correct, the second step is not; and the amount of the anhydride is in large excess to serve a purpose.)
Chapter 17 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.