CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
2nd Edition
ISBN: 9781259382307
Author: Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 17.50QP

(a)

Interpretation Introduction

Interpretation:

The solubility product of given compounds has to be calculated.

Concept introduction:

  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion,  raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .
  • Molar solubility is defined as amount of solute that can be dissolved in one litre of solution before it attains saturation.

To calculate: solubility product of SrF2

(a)

Expert Solution
Check Mark

Answer to Problem 17.50QP

Ksp of SrF2 is 7.8×10-10

Explanation of Solution

SrF2=7.3 ×10-2g/L

Calculate the molar solubility

=7.3 ×10-2g SrF21L×1 mol SrF2125.6 g SrF2=5.8 ×10-4mol /L =s

The molar solubility can be calculated using given moles and molecular weight of SrF2

Calculate the Ksp of SrF2

For calculation convenience consider ''s" as molar solubility of SrF2

SrF2(s)  Sr2+(aq) + 2F-(aq)Initial concentration(M):  00Change in concentration (M):-s +s+2sequilibrium concentration (M): s2sKsp= [Sr2+][F-]2 = (s)(2s)2 = 4s3=4(5.8 ×10-4)3=7.8×10-10

The Ksp value of SrF2 can be calculated using the concentrations of ions.  By doing simple mathematical operations in solubility product expression, Ksp of SrF2 can be determined.

(b)

Interpretation Introduction

Interpretation:

The solubility product of given compounds has to be calculated.

Concept introduction:

  • The solubility product constant ( Ksp ) is defined as the equilibrium between compound and its ions in an aqueous solution.
  • Solubility product is the multiplication of concentration of dissolved ion,  raised to the power of coefficients.
  • Ionic compound A3B Ksp= [A]3[B] .
  • Molar solubility is defined as amount of solute that can be dissolved in one litre of solution before it attains saturation.

To calculate: the Ksp of Ag3PO4

(b)

Expert Solution
Check Mark

Answer to Problem 17.50QP

Ksp of Ag3PO4 is 1.8×10-18

Explanation of Solution

Ag3PO4=6.7 ×10-3g/L

Calculate the molar solubility of Ag3PO4

=6.7 ×10-3g Ag3PO41L×1 mol Ag3PO4418.7 g Ag3PO4=1.6 ×10-5mol /L =s

The molar solubility can be calculated using given moles and molecular weight of Ag3PO4

Calculate the Ksp of Ag3PO4

For calculation convenience consider ''s" as molar solubility of Ag3PO4

Ag3PO4(s)  3Ag+(aq) + PO43-(aq)Initial concentration(M):  00Change in concentration (M):-s -3s+sequilibrium concentration (M): 3ssKsp= [Ag+]3[PO43-]= (3s)3(s) = 27s4=27(1.6 ×10-5)4=1.8×10-18

The Ksp value of Ag3PO4 can be calculated using the concentrations of ions.  By doing simple mathematical operations in solubility product expression, Ksp of Ag3PO4 can be determined.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
10.00 g of Compound X with molecular formula C₂Hg are burned in a constant-pressure calorimeter containing 40.00 kg of water at 25 °C. The temperature of the water is observed to rise by 2.604 °C. (You may assume all the heat released by the reaction is absorbed by the water, and none by the calorimeter itself.) Calculate the standard heat of formation of Compound X at 25 °C. Be sure your answer has a unit symbol, if necessary, and round it to the correct number of significant digits.
need help not sure what am doing wrong step by step please answer is 971A During the lecture, we calculated the Debye length at physiological salt concentrations and temperature, i.e. at an ionic strength of 150 mM (i.e. 0.150 mol/l) and a temperature of T=310 K. We predicted that electrostatic interactions are effectively screened beyond distances of 8.1 Å in solutions with a physiological salt concentration. What is the Debye length in a sample of distilled water with an ionic strength of 10.0 µM (i.e. 1.00 * 10-5 mol/l)? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).
Influence of salt concentrations on electrostatic interactions 2 Answer is 2.17A why not sure step by step please  What is the Debye length in a concentrated salt solution with an ionic strength of 2.00 mol/l? Assume room temperature, i.e. T= 298 K, and provide your answer as a numerical expression with 3 significant figures in Å (1 Å = 10-10 m).

Chapter 17 Solutions

CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<

Ch. 17.2 - Prob. 17.3WECh. 17.2 - Prob. 3PPACh. 17.2 - Prob. 3PPBCh. 17.2 - Prob. 3PPCCh. 17.2 - Prob. 17.2.1SRCh. 17.2 - Prob. 17.2.2SRCh. 17.2 - Prob. 17.2.3SRCh. 17.2 - Prob. 17.2.4SRCh. 17.3 - Calculate the pH in the titration of 50.0 mL of...Ch. 17.3 - For the titration of 10.0 mL of 0.15 M acetic acid...Ch. 17.3 - Prob. 4PPBCh. 17.3 - Prob. 4PPCCh. 17.3 - Prob. 17.5WECh. 17.3 - Prob. 5PPACh. 17.3 - Prob. 5PPBCh. 17.3 - Which of the graphs [(i)(iv)] best represents the...Ch. 17.3 - Prob. 17.6WECh. 17.3 - Prob. 6PPACh. 17.3 - Prob. 6PPBCh. 17.3 - Prob. 6PPCCh. 17.3 - Prob. 17.3.1SRCh. 17.3 - Prob. 17.3.2SRCh. 17.3 - Prob. 17.3.3SRCh. 17.4 - Calculate the solubility of copper(II) hydroxide...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Calculate the molar solubility and the solubility...Ch. 17.4 - Prob. 7PPCCh. 17.4 - Prob. 17.8WECh. 17.4 - Prob. 8PPACh. 17.4 - Prob. 8PPBCh. 17.4 - Prob. 8PPCCh. 17.4 - Prob. 17.9WECh. 17.4 - Predict whether a precipitate will form from each...Ch. 17.4 - Prob. 9PPBCh. 17.4 - Prob. 9PPCCh. 17.4 - Prob. 17.4.1SRCh. 17.4 - Prob. 17.4.2SRCh. 17.4 - Prob. 17.4.3SRCh. 17.5 - Prob. 17.10WECh. 17.5 - Calculate the molar solubility of AgI in (a) pure...Ch. 17.5 - Arrange the following salts in order of increasing...Ch. 17.5 - Prob. 17.11WECh. 17.5 - Determine if the following compounds are more...Ch. 17.5 - Prob. 11PPBCh. 17.5 - Prob. 11PPCCh. 17.5 - Prob. 17.12WECh. 17.5 - Prob. 12PPACh. 17.5 - Prob. 12PPBCh. 17.5 - Beginning with a saturated solution of AgCl, which...Ch. 17.5 - Prob. 17.5.1SRCh. 17.5 - Prob. 17.5.2SRCh. 17.6 - Prob. 17.13WECh. 17.6 - Prob. 13PPACh. 17.6 - Prob. 13PPBCh. 17.6 - Prob. 13PPCCh. 17.6 - Prob. 17.6.1SRCh. 17.6 - Prob. 17.6.2SRCh. 17 - Use Le Chteliers principle to explain how the...Ch. 17 - Describe the effect on pH (increase, decrease, or...Ch. 17 - Prob. 17.3QPCh. 17 - Prob. 17.4QPCh. 17 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 17 - Determine the pH of (a) a 0.20 M NH3 solution, and...Ch. 17 - Which pair of substances can be dissolved together...Ch. 17 - Prob. 17.2VCCh. 17 - Prob. 17.3VCCh. 17 - Prob. 17.4VCCh. 17 - Prob. 17.7QPCh. 17 - Prob. 17.8QPCh. 17 - Calculate the pH of the buffer system made up of...Ch. 17 - Calculate the pH of the following two buffer...Ch. 17 - Prob. 17.11QPCh. 17 - Prob. 17.12QPCh. 17 - Prob. 17.13QPCh. 17 - The pH of blood plasma is 7.40. Assuming the...Ch. 17 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 17 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 17 - Prob. 17.17QPCh. 17 - Prob. 17.18QPCh. 17 - Prob. 17.19QPCh. 17 - Prob. 17.20QPCh. 17 - The diagrams [(a)(d)] contain one or more of the...Ch. 17 - Prob. 17.22QPCh. 17 - Prob. 17.23QPCh. 17 - Prob. 17.24QPCh. 17 - Prob. 17.25QPCh. 17 - The amount of indicator used in an acid-base...Ch. 17 - Prob. 17.27QPCh. 17 - Prob. 17.28QPCh. 17 - Prob. 17.29QPCh. 17 - Prob. 17.30QPCh. 17 - Prob. 17.31QPCh. 17 - Prob. 17.32QPCh. 17 - Prob. 17.33QPCh. 17 - Prob. 17.34QPCh. 17 - A 25.0-,L solution of 0n100 M CH3COOH is titrated...Ch. 17 - A 10.0-mL solution of 0.300 M NH3 is titratee with...Ch. 17 - Prob. 17.37QPCh. 17 - Prob. 17.38QPCh. 17 - Prob. 17.39QPCh. 17 - Prob. 17.40QPCh. 17 - Diagrams (a) through (d) represent solutions at...Ch. 17 - Prob. 17.42QPCh. 17 - Prob. 17.43QPCh. 17 - Prob. 17.44QPCh. 17 - Write balanced equations and solubility product...Ch. 17 - Prob. 17.46QPCh. 17 - Prob. 17.47QPCh. 17 - Prob. 17.48QPCh. 17 - Prob. 17.49QPCh. 17 - Prob. 17.50QPCh. 17 - Prob. 17.51QPCh. 17 - The solubility of an ionic compound MX (molar mass...Ch. 17 - Prob. 17.53QPCh. 17 - Prob. 17.54QPCh. 17 - Prob. 17.55QPCh. 17 - Prob. 17.56QPCh. 17 - Prob. 17.57QPCh. 17 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 17 - Prob. 17.59QPCh. 17 - Prob. 17.60QPCh. 17 - Prob. 17.5VCCh. 17 - Prob. 17.6VCCh. 17 - Prob. 17.7VCCh. 17 - How would the concentration of silver ion in the...Ch. 17 - Prob. 17.61QPCh. 17 - Prob. 17.62QPCh. 17 - Prob. 17.63QPCh. 17 - Prob. 17.64QPCh. 17 - The solubility product of PbBr2 is 8.9 106....Ch. 17 - Prob. 17.66QPCh. 17 - Calculate the molar solubility of BaSO4 in (a)...Ch. 17 - Prob. 17.68QPCh. 17 - Prob. 17.69QPCh. 17 - Prob. 17.70QPCh. 17 - Prob. 17.71QPCh. 17 - Prob. 17.72QPCh. 17 - Calculate the concentrations of Cd2+, Cd(CN)42 ,...Ch. 17 - Prob. 17.74QPCh. 17 - Prob. 17.75QPCh. 17 - (a) Calculate the molar solubility of...Ch. 17 - Prob. 17.77QPCh. 17 - Prob. 17.78QPCh. 17 - Prob. 17.79QPCh. 17 - Prob. 17.80QPCh. 17 - Prob. 17.81QPCh. 17 - Prob. 17.82QPCh. 17 - Prob. 17.83QPCh. 17 - Prob. 17.84QPCh. 17 - In a group 1 analysis, a student adds HCl acid to...Ch. 17 - Prob. 17.86QPCh. 17 - Prob. 17.87QPCh. 17 - Sketch the titration curve of a weak acid with a...Ch. 17 - Prob. 17.89QPCh. 17 - Prob. 17.90QPCh. 17 - Prob. 17.91QPCh. 17 - Tris [tris(hydroxymethyl)aminomethane] is a common...Ch. 17 - Prob. 17.93QPCh. 17 - Prob. 17.94QPCh. 17 - Prob. 17.95QPCh. 17 - Prob. 17.96QPCh. 17 - Prob. 17.97QPCh. 17 - Find the approximate pH range suitable for...Ch. 17 - Prob. 17.99QPCh. 17 - Prob. 17.100QPCh. 17 - Prob. 17.101QPCh. 17 - Prob. 17.102QPCh. 17 - Barium is a toxic substance that can seriously...Ch. 17 - The pKa of phenolphthalein is 9.10. Over what pH...Ch. 17 - Prob. 17.105QPCh. 17 - Prob. 17.106QPCh. 17 - Prob. 17.107QPCh. 17 - The molar mass of a certain metal carbonate, MCO3,...Ch. 17 - Prob. 17.109QPCh. 17 - Prob. 17.110QPCh. 17 - Describe how you would prepare a 1 -L 0.20 M...Ch. 17 - Phenolphthalein is the common indicator for the...Ch. 17 - Prob. 17.113QPCh. 17 - Prob. 17.114QPCh. 17 - Prob. 17.115QPCh. 17 - Prob. 17.116QPCh. 17 - Prob. 17.117QPCh. 17 - Prob. 17.118QPCh. 17 - When lemon juice is added to tea, the color...Ch. 17 - How many milliliters of 1.0 M NaOH must be added...Ch. 17 - Prob. 17.121QPCh. 17 - Prob. 17.122QPCh. 17 - Prob. 17.123QPCh. 17 - Prob. 17.124QPCh. 17 - Calcium oxalate is a major component of kidney...Ch. 17 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 17 - Prob. 17.127QPCh. 17 - Prob. 17.128QPCh. 17 - Prob. 17.129QPCh. 17 - (a) Referring to Figure 17.4, describe how you...Ch. 17 - Prob. 17.131QPCh. 17 - Prob. 17.132QPCh. 17 - Prob. 17.133QPCh. 17 - Prob. 17.134QPCh. 17 - Prob. 17.135QPCh. 17 - Prob. 17.136QPCh. 17 - A sample of 0.96 L of HCl gas at 372 mmHg and 22C...Ch. 17 - Prob. 17.138QPCh. 17 - The solutions (a) through (f) represent various...Ch. 17 - Prob. 17.140QPCh. 17 - Prob. 17.141QPCh. 17 - Which of the acids in Table 16.5 (page 732) can be...Ch. 17 - Prob. 17.2KSPCh. 17 - Prob. 17.3KSPCh. 17 - How much sodium fluoride must be dissolved in 250...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY