Use Le Châtelier’s principle to explain how the common ion effect affects the pH of a weak acid solution.
Interpretation:
By using Le Chatelier’s principle, the changes of pH of a weak acid solution due to common ion effect has to be explained.
Concept introduction:
- Le Chatelier's principle states that if a system in equilibrium gets disturbed due to modification of concentration, temperature, volume, and pressure, then it reset to counteract the effect of disturbance.
- When the concentration of one of the ions of a chemical solution got higher, it reacts with counter charged ions and precipitated out as salt till the ion product equals solubility product is called common ion effect.
- Incomplete dissociation of an acid in aqueous solution is called weak acid.
Answer to Problem 17.1QP
The pH of weak acid (acetic acid) increases due to addition of acetate ions from sodium acetate which suppress ionization of acetic acid leads to decrease in percent ionization of acetic acid. The equilibrium shifts towards left because of more acetate ion (common ion).
Explanation of Solution
To explain: The changes of pH of a weak acid solution due to common ion effect.
The equilibrium reaction of acetic acid and sodium acetate are as follows,
In an aqueous solution, dissolve acetic acid (weak acid) thoroughly which dissociates as acetate ions and hydronium ions. Then add sodium acetate (strong electrolyte) and it dissociates completely to form sodium ions and acetate ions. The common ion produced from both acetic acid and sodium acetate is acetate ion. By following the principle of Le Chatelier Principle, the acetate ions from sodium acetate combine with hydronium ions and the equilibrium shifts towards left which reduce the ionization of acetic acid. Thus lowers the percent dissociation of acetic acid and due to decrease in hydrogen ion concentration the pH of the solution will increase.
The change of pH of a weak acid solution due to common ion effect was explained by Le Chatelier's principle.
Want to see more full solutions like this?
Chapter 17 Solutions
CHEMISTRY:ATOMS FIRST (LL)>CUSTOM PKG.<
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning