![CHEMISTRY (LL) W/CNCT >BI<](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781260572384/9781260572384_smallCoverImage.gif)
Carbon monoxide (CO) and nitric oxide (NO) are polluting gases contained in automobile exhaust. Under suitable conditions, these gases can be made to react to form nitrogen (N2) and the less harmful carbon dioxide (CO2). (a) Write an equation for this reaction. (b) Identify the oxidizing and reducing agents. (c) Calculate the KP for the reaction at 25°C. (d) Under normal atmospheric conditions, the partial pressures are
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The equation has to be determined given carbon monoxide and nitric oxide atmospheric reactions.
Explanation of Solution
The atmospheric equilibrium reaction of given the different terms of process (a) is shown below.
The equal mole ratio of carbon monoxide
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The oxidizing and reducing agent has to be identified given atmospheric reactions.
Concept Introduction:
An oxidizing agent is a substance that causes oxidation by accepting electron. The oxidizing agent is reduced.
A reducing agent is a substance that causes reduction by donating electrons. The reducing agent is oxidized.
Explanation of Solution
The atmospheric equilibrium reaction is,
Given statement (b) nitric oxide (
Examination above reaction clearly shows that
The
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The equilibrium pressure
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Explanation of Solution
The atmospheric reaction fallow as,
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
Given equilibrium reaction, the
Concept Introduction:
Free energy (Gibbs free energy) is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where,
Reaction quotient: This type of chemical equilibrium reaction proceeds likely to produced, given either the pressure (or) the concentration of the reactants and the products. The value can be compared to the equilibrium constant, to determine the direction of the reaction that is take place. Then reaction quotient (Qc) the indication of Q can be used to determine which direction will shift to reach of chemical equilibrium process.
Explanation of Solution
The
(e)
![Check Mark](/static/check-mark.png)
Interpretation:
The raising temperatures favor the formation of
Concept Introduction:
Standard enthalpy: is the term that is used to explain the total energy content in a thermodynamic system that can be converted into work. The free energy is represented by the letter
Where,
Explanation of Solution
Let us consider a statement (e).
Since
No, the formation of
Want to see more full solutions like this?
Chapter 17 Solutions
CHEMISTRY (LL) W/CNCT >BI<
- I don't understand what to put for final step. Does that just mean termination? And would a radical form when I add bromine to ch2 between the rings?arrow_forwardNonearrow_forward11 1 Which one of the following compounds would show a proton NMR signal at the highest chemical shift? (7pts) cl @amitabh CI CI d) Cl CICIarrow_forward
- Nonearrow_forwardH2SO4 (cat.), H₂O 100 °C NH₂arrow_forwardX Draw the major products of the elimination reaction below. If elimination would not occur at a significant rate, check the box under the drawing area instead. ది www. Cl + OH Elimination will not occur at a significant rate. Click and drag to start drawing a structure.arrow_forward
- Nonearrow_forward1A H 2A Li Be Use the References to access important values if needed for this question. 8A 3A 4A 5A 6A 7A He B C N O F Ne Na Mg 3B 4B 5B 6B 7B 8B-1B 2B Al Si P 1B 2B Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe * Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Ha ****** Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Analyze the following reaction by looking at the electron configurations given below each box. Put a number and a symbol in each box to show the number and kind of the corresponding atom or ion. Use the smallest integers possible. cation anion + + Shell 1: 2 Shell 2: 8 Shell 3: 1 Shell 1 : 2 Shell 2 : 6 Shell 1 : 2 Shell 2: 8 Shell 1: 2 Shell 2: 8arrow_forwardNonearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079113/9781305079113_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133958437/9781133958437_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)