In the metabolism of glucose, the first step is the conversion of glucose to glucose 6-phosphate: glucose + H 3 PO 4 → glucose 6 − phosphate + H 2 O Δ G ° = 13.4 kJ/mol Because Δ G ° is positive, this reaction does not favor the formation of products. Show how this reaction can be made to proceed by coupling it with the hydrolysis of ATP. Write an equation for the coupled reaction and estimate the equilibrium constant for the coupled process.
In the metabolism of glucose, the first step is the conversion of glucose to glucose 6-phosphate: glucose + H 3 PO 4 → glucose 6 − phosphate + H 2 O Δ G ° = 13.4 kJ/mol Because Δ G ° is positive, this reaction does not favor the formation of products. Show how this reaction can be made to proceed by coupling it with the hydrolysis of ATP. Write an equation for the coupled reaction and estimate the equilibrium constant for the coupled process.
Solution Summary: The author explains the glucose coupled metabolism process and the equilibrium constant for the coupled process.
In the metabolism of glucose, the first step is the conversion of glucose to glucose 6-phosphate:
glucose
+
H
3
PO
4
→
glucose
6
−
phosphate
+
H
2
O
Δ
G
°
=
13.4
kJ/mol
Because ΔG° is positive, this reaction does not favor the formation of products. Show how this reaction can be made to proceed by coupling it with the hydrolysis of ATP. Write an equation for the coupled reaction and estimate the equilibrium constant for the coupled process.
Science that deals with the amount of energy transferred from one equilibrium state to another equilibrium state.
Highlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area.
HO-
HO-
-0
OH
OH
HO
NG
HO-
HO-
OH
OH
OH
OH
NG
OH
€
+
Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn
it into the product of the reaction.
Also, write the name of the product molecule under the drawing area.
Name: ☐
H
C=0
X
H-
OH
HO-
H
HO-
-H
CH₂OH
×
Draw the Haworth projection of the disaccharide made by joining D-glucose and D-mannose with a ẞ(1-4) glycosidic bond. If the disaccharide has more than
one anomer, you can draw any of them.
Click and drag to start drawing a
structure.
X
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY