
To write:
The balanced equation for the cell for each pair and identify which half-reaction takes place at anode and which at cathode.

Answer to Problem 17.32QA
Solution:
a) Anode:
Cathode:
----------------------------------------------------------------------------------
Balanced equation:
b) Anode:
Cathode:
----------------------------------------------------------------------------------------------------------------
Balanced equation:
c) Anode:
Cathode:
--------------------------------------------------------------------------------------------------
Balanced equation:
Explanation of Solution
1) Concept:
We are asked to write and balance the cell reaction from the given pair. Values of standard reduction potential are given in appendix 6, table A6.1. Higher the standard reduction potential, higher is the tendency to reduce. So the element that has a negative or small value of standard reduction potential is more likely to oxidize. Therefore, we reverse that reaction to make it an oxidation half reaction. For an
Adding two half
2) Formula:
3) Given:
i)
ii)
iii)
4) Calculations:
The standard reduction potential values for all these reactions are taken from the Appendix 6, table A6.1.
a.
Since the standard reduction potential for
In the first pair of reactions, the number of electrons is not the same, so we need to balance it. So, multiply the second reaction by 2, and we get
So,
Now add two half balanced reactions:
Anode:
Cathode:
-------------------------------------------------------------------------
b.
Since the standard reduction potential for the second reaction is higher than that of the first reaction, the second given reaction will serve as a cathode and undergo a reduction half reaction, and the first given reaction will serve as an anode and undergo an oxidation half reaction.
In the second pair of reactions, the number of electrons is not the same, so we need to balance it. So, multiply the first reaction by
Now add two half reactions:
Anode:
Cathode:
----------------------------------------------------------------------------------------------------------------
c.
Since the standard reduction potential for the second reaction is higher than that of the first reaction, the second given reaction will serve as a cathode and undergo a reduction half reaction, and the first given reaction will serve as an anode and undergo an oxidation half reaction.
In the third pair of reactions, electrons are not the same, so we need to balance them, so, multiply second reaction by 2. We get
So,
Now add two half balanced reactions:
Anode:
Cathode:
-------------------------------------------------------------------------------------------
Conclusion:
For an electrochemical cell, higher the standard reduction potential, higher is the tendency to reduce (cathode). So, the reaction that has a negative or small value of standard reduction potential is more likely to oxidize (anode). Therefore, this reaction is reversed to get the oxidation reaction that will take place at the anode. The reaction with a higher value of standard reduction potential is the reduction reaction that will take place at the cathode.
Want to see more full solutions like this?
Chapter 17 Solutions
Chemistry: An Atoms-Focused Approach
- Using wedge-and-dash bonds, modify the bonds on the chiral carbon in the molecule below so the molecule has R stereochemical configuration. NH H Br X टेarrow_forwardProvide photos of models of the following molecules. (Include a key for identification of the atoms) 1,2-dichloropropane 2,3,3-trimethylhexane 2-bromo-3-methybutanearrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFirefly luciferin exhibits three rings. Identify which of the rings are aromatic. Identify which lone pairs are involved in establishing aromaticity. The lone pairs are labeled A-D below.arrow_forwardA 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 10.0 mL of the base solution, what is the pH of the resulting solution?arrow_forward
- Given a complex reaction with rate equation v = k1[A] + k2[A]2, what is the overall reaction order?arrow_forwardPlease draw the structure in the box that is consistent with all the spectral data and alphabetically label all of the equivalent protons in the structure (Ha, Hb, Hc....) in order to assign all the proton NMR peaks. The integrations are computer generated and approximate the number of equivalent protons. Molecular formula: C13H1802 14 13 12 11 10 11 (ppm) Structure with assigned H peaks 2.08 3.13arrow_forwardCHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the steady-state approximation method. Explain what it consists of.arrow_forward
- CHEMICAL KINETICS. One of the approximation methods for solving the rate equation is the limiting or determining step approximation method. Explain what it consists of.arrow_forwardCHEMICAL KINETICS. Indicate the approximation methods for solving the rate equation.arrow_forwardTRANSMITTANCE เบบ Please identify the one structure below that is consistent with the 'H NMR and IR spectra shown and draw its complete structure in the box below with the protons alphabetically labeled as shown in the NMR spectrum and label the IR bands, including sp³C-H and sp2C-H stretch, indicated by the arrows. D 4000 OH LOH H₂C CH3 OH H₂C OCH3 CH3 OH 3000 2000 1500 HAVENUMBERI-11 1000 LOCH3 Draw your structure below and label its equivalent protons according to the peak labeling that is used in the NMR spectrum in order to assign the peaks. Integrals indicate number of equivalent protons. Splitting patterns are: s=singlet, d=doublet, m-multiplet 8 3Hb s m 1Hd s 3Hf m 2Hcd 2Had 1He 鄙视 m 7 7 6 5 4 3 22 500 T 1 0arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





