Chemistry: An Atoms-Focused Approach
14th Edition
ISBN: 9780393600681
Author: Gilbert
Publisher: W. W. Norton & Company
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 17.20QA
Interpretation Introduction
To:
- Write the anode and cathode half-reactions.
- Write a balanced cell reaction.
- Diagram the cell.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Chemistry: An Atoms-Focused Approach
Ch. 17 - Prob. 17.1VPCh. 17 - Prob. 17.2VPCh. 17 - Prob. 17.3VPCh. 17 - Prob. 17.4VPCh. 17 - Prob. 17.5VPCh. 17 - Prob. 17.6VPCh. 17 - Prob. 17.7VPCh. 17 - Prob. 17.8VPCh. 17 - Prob. 17.9VPCh. 17 - Prob. 17.10VP
Ch. 17 - Prob. 17.11QACh. 17 - Prob. 17.12QACh. 17 - Prob. 17.13QACh. 17 - Prob. 17.14QACh. 17 - Prob. 17.15QACh. 17 - Prob. 17.16QACh. 17 - Prob. 17.17QACh. 17 - Prob. 17.18QACh. 17 - Prob. 17.19QACh. 17 - Prob. 17.20QACh. 17 - Prob. 17.21QACh. 17 - Prob. 17.22QACh. 17 - Prob. 17.23QACh. 17 - Prob. 17.24QACh. 17 - Prob. 17.25QACh. 17 - Prob. 17.26QACh. 17 - Prob. 17.27QACh. 17 - Prob. 17.28QACh. 17 - Prob. 17.29QACh. 17 - Prob. 17.30QACh. 17 - Prob. 17.31QACh. 17 - Prob. 17.32QACh. 17 - Prob. 17.33QACh. 17 - Prob. 17.34QACh. 17 - Prob. 17.35QACh. 17 - Prob. 17.36QACh. 17 - Prob. 17.37QACh. 17 - Prob. 17.38QACh. 17 - Prob. 17.39QACh. 17 - Prob. 17.40QACh. 17 - Prob. 17.41QACh. 17 - Prob. 17.42QACh. 17 - Prob. 17.43QACh. 17 - Prob. 17.44QACh. 17 - Prob. 17.45QACh. 17 - Prob. 17.46QACh. 17 - Prob. 17.47QACh. 17 - Prob. 17.48QACh. 17 - Prob. 17.49QACh. 17 - Prob. 17.50QACh. 17 - Prob. 17.51QACh. 17 - Prob. 17.52QACh. 17 - Prob. 17.53QACh. 17 - Prob. 17.54QACh. 17 - Prob. 17.55QACh. 17 - Prob. 17.56QACh. 17 - Prob. 17.57QACh. 17 - Prob. 17.58QACh. 17 - Prob. 17.59QACh. 17 - Prob. 17.60QACh. 17 - Prob. 17.61QACh. 17 - Prob. 17.62QACh. 17 - Prob. 17.63QACh. 17 - Prob. 17.64QACh. 17 - Prob. 17.65QACh. 17 - Prob. 17.66QACh. 17 - Prob. 17.67QACh. 17 - Prob. 17.68QACh. 17 - Prob. 17.69QACh. 17 - Prob. 17.70QACh. 17 - Prob. 17.71QACh. 17 - Prob. 17.72QACh. 17 - Prob. 17.73QACh. 17 - Prob. 17.74QACh. 17 - Prob. 17.75QACh. 17 - Prob. 17.76QACh. 17 - Prob. 17.77QACh. 17 - Prob. 17.78QACh. 17 - Prob. 17.79QACh. 17 - Prob. 17.80QACh. 17 - Prob. 17.81QACh. 17 - Prob. 17.82QACh. 17 - Prob. 17.83QACh. 17 - Prob. 17.84QACh. 17 - Prob. 17.85QACh. 17 - Prob. 17.86QACh. 17 - Prob. 17.87QACh. 17 - Prob. 17.88QACh. 17 - Prob. 17.89QACh. 17 - Prob. 17.90QACh. 17 - Prob. 17.91QACh. 17 - Prob. 17.92QACh. 17 - Prob. 17.93QACh. 17 - Prob. 17.94QACh. 17 - Prob. 17.95QACh. 17 - Prob. 17.96QACh. 17 - Prob. 17.97QACh. 17 - Prob. 17.98QACh. 17 - Prob. 17.99QACh. 17 - Prob. 17.100QACh. 17 - Prob. 17.101QACh. 17 - Prob. 17.102QA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forwardFour voltaic cells are set up. In each, one half-cell contains a standard hydrogen electrode. The second half-cell is one of the following: (i) Cr3+(aq, 1.0 M)|Cr(s) (ii) Fea+(aq, 1.0M)|Fe(s) (iii) Cu2+(aq, 1.0M)|Cu(s) (iv) Mg2+(aq, 1.0M)|Mg(s) (a) In which of the voltaic cells does the hydrogen electrode serve as the cathode? (b) Which voltaic cell produces the highest potential? Which produces the lowest potential?arrow_forwardConsider a battery made from one half-cell that consists of a capper electrode in 1 M CuSO4 solution and another half—cell that consists of a lead electrode in 1 M Pb(NO3)2 solution. (a) What are the reactions at the anode, cathode, and the overall reaction? (b) What is the standard cell potential for the battery? (c) Most devices designed to use dry-cell batteries can operate between 1.0 and 1.5 V. Could this tell he used to make a battery that could replace a dry-cell battery? Why or why not. (d) Suppose sulfuric acid is added to the half—cell with the lead electrode and some PbSO4(s) forms. Would the cell potential increase, decrease, or remain the same?arrow_forward
- Give the notation for a voltaic cell whose overall cell reaction is Mg(s)+2Ag+(aq)Mg2+(aq)+2Ag(s) What are the half-cell reactions? Label them as anode or cathode reactions. What is the standard cell potential of this cell?arrow_forwardIn principle, a battery could be made from aluminum metal and chlorine gas. (a) Write a balanced equation for the reaction thatwould occur in a battery using Al3+(aq) | Al(s) andCl2(g) | Cl(aq) half-cells. (b) Identify the half-reaction at the anode and at the cathode. Do electrons flow from the Al electrode when thecell does work? Explain. (c) Calculate the standard potential, Ecell, for the battery.arrow_forwardConsider the cell Pt|H2|H+H+|H2|Pt In the anode half-cell, hydrogen gas at 1.0 atm is bubbled over a platinum electrode dipping into a solution that has a pH of 7.0. The other half-cell is identical to the first except that the solution around the platinum electrode has a pH of 0.0. What is the cell voltage?arrow_forward
- Consider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forwardYou have 1.0 M solutions of Al(NO3)3 and AgNO3 along with Al and Ag electrodes to construct a voltaic cell. The salt bridge contains a saturated solution of KCl. Complete the picture associated with this problem by a writing the symbols of the elements and ions in the appropriate areas (both solutions and electrodes). b identifying the anode and cathode. c indicating the direction of electron flow through the external circuit. d indicating the cell potential (assume standard conditions, with no current flowing). e writing the appropriate half-reaction under each of the containers. f indicating the direction of ion flow in the salt bridge. g identifying the species undergoing oxidation and reduction. h writing the balanced overall reaction for the cell.arrow_forwardDraw a diagram of each cell. Label the anode, the cathode, the species in each half-cell solution, the direction of electron movement in an external circuit, and thedirection of movement of ions within the cell. (a) Cu(s) | Cu2+(aq) || Fe2+(aq) |Fe(s) (b) Pt(s) | H2O2(aq), H+(aq) || Fe2+(aq), Fe3+(aq) | Pt(s)arrow_forward
- Consider a galvanic cell based on the following half-reactions: a. What is the standard potential for this cell? b. A nonstandard cell is set up at 25C with [Mg2+] = 1.00 105 M. The cell potential is observed to be 4.01 V. Calculate [Au3+] in this cell.arrow_forwardFor a voltage-sensitive application, you are working on a battery that must have a working voltage of 0.85 V. The half-cells to be used have a standard cell potential of 0.97 V. What must be done to achieve the correct voltage? What information would you need to look up?arrow_forwardFor the reaction Cu2+(aq) + Zn(s) → Cu(s) + Zn2+ (aq), why can’t you generate electric current by placing a piece of copper metal and a piece of zinc metal in a solution containing CuCl2(aq) and ZnCl2(aq)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY