(a)
Interpretation: The reason corresponding to the fact that the single kekule structure is consistent with the first result, but does not explain the second result is to be stated.
Concept introduction: Kekule structure of benzene consists of three alternating double and single bonds. But his structures do not take into the account of resonance structures of benzene.
(b)
Interpretation: The reason corresponding to the fact that resonance description of benzene is consistent with results of both reactions is to be stated.
Concept introduction: Kekule structure of benzene consists of three alternating double and single bonds. But his structures do not consider the resonance structures of benzene.
Most of the organic structures cannot be represented using single Lewis structure. Therefore, there exists more than one Lewis structure for representing a molecule or ion. These structures are known as resonance structures. These resonance structure combine together to give resonance hybrid that is lower in energy and is the most stable structure.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
PKG ORGANIC CHEMISTRY
- 1. If the following molecule underwent a radical bromination (just add one bromine) - draw the product and then draw an energy diagram to explain why you drew the product you showed. Br₂ light ?arrow_forwardPlease correct Answer and don't use Hand ratingarrow_forwardPlease don't use Ai solutionarrow_forward
- Nonearrow_forwardPt + H₂ Draw the molecule on the canvas by choosing buttons from the Tools (for bonds), Atoms, and Advanced Templ 9 2 0 © 120arrow_forwardComplete boxes in the flow chart. Draw the structure of the organic compound foundin each layer after adding 3M NaOH and extraction. Make sure to include any charges. Provide explanation on answers.arrow_forward
- == Vid4Q2 Unanswered ☑ Provide IUPAC name of product in the reaction below A 3,4-dimethylcyclohexene B 1,2-dimethylcyclohexane C 1,2-dimethylcyclohexene D 3,4-dimethylcyclohexane H₂ Pdarrow_forward5. Use the MS data to answer the questions on the next page. 14.0 1.4 15.0 8.1 100- MS-IW-5644 26.0 2.8 27.0 6.7 28.0 1.8 29.0 80 4.4 38.0 1.0 39.0 1.5 41.0 1.2 42.0 11.2 43.0 100.0 44.0 4.3 79.0 1.9 80.0 2.6 Relative Intensity 40 81.0 1.9 82.0 2.5 93.0 8.7 20- 95.0 8.2 121.0 2.0 123.0 2.0 136.0 11.8 0 138.0 11.5 20 40 8. 60 a. Br - 0 80 100 120 140 160 180 200 220 m/z Identify the m/z of the base peak and molecular ion. 2 b. Draw structures for each of the following fragments (include electrons and charges): 43.0, 93.0, 95.0, 136.0, and 138.0 m/z. C. Draw a reasonable a-fragmentation mechanism for the fragmentation of the molecular ion to fragment 43.0 m/z. Be sure to include all electrons and formal charges. 6. Using the values provided in Appendix E of your lab manual, calculate the monoisotopic mass for the pyridinium ion (CsH6N) and show your work.arrow_forwardNonearrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning