Concept explainers
A uniform slender rod is placed at corner B and is given a slight clockwise motion. Assuming that the corner is sharp and becomes slightly embedded in the end of the rod so that the coefficient of static friction at B is very large, determine (a) the angle β through which the rod will have rotated when it loses contact with the corner, (b) the corresponding velocity of end A.
Fig. P17.139
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
Additional Engineering Textbook Solutions
Shigley's Mechanical Engineering Design (McGraw-Hill Series in Mechanical Engineering)
Foundations of Materials Science and Engineering
Mechanics of Materials (10th Edition)
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
Engineering Mechanics: Statics
- Please solve 16-6.arrow_forwardProblem 19.1 A horizontal force P acts on a cabinet that rests on a floor as shown. The cabinet weighs 120 lbf. It is known that the coefficient of static friction is µ = 0.30 and the coefficient of kinetic friction is HK = 0.24. (a) If slipping impends, what is the magnitude of P? (b) If tipping impends, (i) what is the magnitude of P, and (ii) at what point will the resultant floor reaction act? (c) What is the smallest magnitude of P that will cause the cabinet to move? What type of motion will the movement be, i.e., "slip" or "tip"? P 36 inches B I G с т 24 inches 15 inches Answer: Ps <50 lbf, PT < 50 lbf (but they are not the same value!)arrow_forwardI just need a,b, and carrow_forward
- The 12-lb uniform disk shown has a radius of r = 3.2 in. and rotates counterclockwise. Its center C is constrained to move in a slot cut in the vertical member AB, and an 11-lb horizontal force P is applied at B to maintain contact at D between the disk and the vertical wall. The disk moves downward under the influence of gravity and the friction at D. Knowing that the coefficient of kinetic friction between the disk and the wall is 0.12 and neglecting friction in the vertical slot, determine (a) the angular acceleration of the disk, (b) the acceleration of the center C of the disk.arrow_forward3. The 10-in.-radius brake drum is attached to A a larger flywheel which is not shown. The total mass moment of inertia of the flywheel and drum is 16 lb · ft · s² and the coefficient of kinetic 6 in. friction between the drum and the brake shoe is В 0.40. Knowing that the initial angular velocity is 240 rpm clockwise, determine the force which must be exerted by the hydraulic cylinder if the system is to stop in 75 revolutions. 12 in. D Use work-energy equation. 10 in. +6 in.-arrow_forwardBlock A of Fig.(3) weighs 100N and block B weighs 300N. The coefficient of static friction between the blocks is 0.5, and the coefficient of kinetic friction between block B and the plane is 0.25. Determine the max. value of (P) that may be applied without causing block A to slide on block B when block B is moving to the left. (The gravitational acceleration is 10 m/s?) P. AT00 24 300 Fig.(3) m.ax Good Luck Pt N ray 2-2 B.arrow_forward
- The double pulley shown has a weight of 35.0 lb and a centroidal radius of gyration of 5.0 in. Cylinder A (25.0 lb) and block B (16 lb) are attached to cords that wrap around pulleys in the manner shown. The coefficient of kinetic friction between block B and the surface is 0.25. Knowing that the system is released from rest at the position shown (h = 4 ft), determine the velocity of cylinder A when it strikes the ground. 6 in. A h 10 in. Barrow_forwardThe double pulley shown has a weight of 32.5 lb and a centroidal radius of gyration of 6.0 in. Cylinder A (35.0 lb) and block B (18 lb) are attached to cords that wrap around pulleys in the manner shown. The coefficient of kinetic friction between block B and the surface is 0.25. Knowing that the system is released from rest at the position shown (h = 3 ft), determine the total distance that block B moves before coming to rest. 6 in. A h 10 in. Barrow_forwardThe 10-in.-radius brake drum is attached to a larger flywheel which is not shown. The total mass moment of inertia of the flywheel and drum is 22 lb ⋅ ft ⋅ s 2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.41. Knowing that the initial angular velocity is 255 rpm clockwise, determine the force which must be exerted by the hydraulic cylinder at point B if the system is to stop in 85 revolutions.arrow_forward
- Two disks of the same material are attached to a shaft as shown. Disk A has a radius r and a thickness 2b, while disk B has a radius nr and a thickness 2b. A couple M with a constant magnitude is applied when the system is at rest and is removed after the system has executed two revolutions. Determine the value of n that results in the largest final speed for a point on the rim of disk B.arrow_forwardHow to get the correct answerarrow_forward16.105 A half section of a uniform thin pipe of mass m is at rest when a force P is applied as shown. Assuming that the section rolls without slid- ing, determine (a) its initial angular acceleration, (b) the minimum value of the coefficient of static friction consistent with the motion. Solve Prob. 16.105 assuming that the force P applied at point 아들아들어 16.106 A is directed horizontally to the right. Fig. P16.105 Go Aarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY