
Concept explainers
(a)
The angular velocity of gymnast and the force exerted on his hands after he has rotated through
(a)

Answer to Problem 17.20P
The angular velocity of gymnast and the force exerted on his hands after he has rotated through
The force exerted on gymnast’s hands after he has rotated through
Explanation of Solution
Given information:
The weight (W) of the gymnast is 160 lb.
The centroidal radius of gyration
Calculation:
Find the mass (m) of the gymnast using the equation:
Here, g is the acceleration due to gravity.
Substitute 160 lb for W.
Find the mass moment of inertia
Substitute
Consider position 1 of the gymnast is directly above the bar.
The elevation
Find the potential energy
Substitute 160 lb for W, and 3.5 ft for
At initial position, the gymnast is at rest. Therefore, the velocity
Consider position 2 of the gymnast in which the body of gymnast at level of bar after rotating
Sketch the free body diagram and kinetic diagram of the position 2 as shown in Figure (1).
Refer Figure (1),
At the position 2, the body is in horizontal. Therefore, potential energy
Find the equation of velocity
Substitute 3.5 ft for
Write the equation of kinetic energy
Substitute
Apply the Principle of conservation of energy.
Substitute 0 for
Thus, the angular velocity of gymnast and the force exerted on his hands after he has rotated through
Refer Figure (2),
Find the acceleration
Here,
Substitute 3.5 ft for h.
Find the acceleration
Substitute 3.5 ft for h and
Take moment about mass canter O.
Substitute
Find the horizontal force
Consider equilibrium along horizontal axis.
Substitute
Find the vertical force
Consider equilibrium along vertical axis.
Substitute
Substitute
Find the force
Substitute
Thus, the force exerted on gymnast’s hands after he has rotated through
(b)
The angular velocity of gymnast and the force exerted on his hands after he has rotated through
(b)

Answer to Problem 17.20P
The angular velocity of gymnast and the force exerted on his hands after he has rotated through
The force exerted on gymnast’s hands after he has rotated through
Explanation of Solution
Calculation:
Consider position 3 of the gymnast is directly below the bar after rotating
The elevation
Find the potential energy
Substitute 160 lb for W, and
At initial position, the gymnast is at rest. Therefore, the velocity
Consider position 2 of the gymnast in which the body of gymnast at level of bar after rotating
Sketch the free body diagram and kinetic diagram of the position 3 as shown in Figure 2.
Refer Figure (2),
Find the equation of velocity
Substitute 3.5 ft for
Write the equation of kinetic energy
Substitute
Find the angular velocity
Apply the Principle of conservation of energy.
Substitute 0 for
Thus, the angular velocity of gymnast and the force exerted on his hands after he has rotated through
Refer Figure (2),
The acceleration
Find the acceleration
Substitute 3.5 ft for h and
Find the horizontal force
Consider equilibrium along horizontal axis.
Substitute 0 for
Find the vertical force
Consider equilibrium along vertical axis.
Substitute
Find the force
Substitute 0 for
Thus, the force exerted on gymnast’s hands after he has rotated through
Want to see more full solutions like this?
Chapter 17 Solutions
Connect 1 Semester Access Card for Vector Mechanics for Engineers: Statics and Dynamics
- handwritten solutions only, please!arrow_forwardOn from the equation: 2 u = C₁ + C₂ Y + Czy + Cu y³ Find C₁, C₂, C3 and Cy Using these following Cases : (a) 4=0 at y=0 (b) U = U∞ at y = 8 du (c) at Y = S ду --y. ди = 0 at y = 0 бугarrow_forwardI need help with a MATLAB code. I am trying to solve this question. Based on the Mars powered landing scenariosolve Eq. (14) via convex programming. Report the consumed fuel, and discuss the results with relevant plots. I am using the following MATLAB code and getting an error. I tried to fix the error and I get another one saying something about log and exp not being convex. Can you help fix my code and make sure it works. The error is CVX Warning: Models involving "log" or other functions in the log, exp, and entropy family are solved using an experimental successive approximation method. This method is slower and less reliable than the method CVX employs for other models. Please see the section of the user's guide entitled The successive approximation method for more details about the approach, and for instructions on how to suppress this warning message in the future.Error using .* (line 173)Disciplined convex programming error: Cannot perform the operation:…arrow_forward
- Note: please use integration for parabolic volume (Vp) of the fluid displaced due to rotation. (Make it simpe as possible to follow in the working out). Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardNote: use centroid method please Provide a clear, step-by-step simplified handwritten solution (with no extra explanations) that is entirely produced by hand without any AI help. I require an expert-level answer, and I will assess it based on the quality and accuracy of the work, referring to the attached image for additional guidance. Make sure every detail is carefully verified for correctness before you submit. Thanks!.arrow_forwardCalculate the cutting time for a 4 in length of cut, given that the feed rate is 0.030 ipr at a speed of 90 fpm.arrow_forward
- for the values: M1=0.41m, M2=1.8m, M3=0.56m, please account for these in the equations. also please ensure that the final answer is the flow rate in litres per second for each part. please use bernoullis equation where needed if an empirical solutions i srequired. also The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the valuearrow_forwardSolve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forward
- Problem 2: An athlete, starting from rest, pulls handle A to the left with a constant force of P = 150 [N]. Knowing that after the handle A has been pulled 0.5 [m], its velocity is 5 [m/s] to the left, determine: a) A position constraint equation using the given coordinate system. b) An acceleration constraint equation. c) The acceleration of A using kinematics equations. d) The acceleration of B using your constraint equation. e) How much weight (magnitude) the athlete is lifting in pounds using Newton's 2nd Law. You must draw a FBD and KD of the circled assembly, assuming the pulleys are massless. Note: 1 [lbf] = 4.448 [N]. ХА Увarrow_forwardProblem 1: For each of the following images, draw a complete FBD and KD for the specified objects. Then write the equations of motion using variables for all unknowns (e.g., mass, friction coefficient, etc.), plugging in kinematic expressions and simplifying where appropriate. Assume motion in all cases, so any friction would be kinetic. M (a) Blocks A & B (Be careful with acceleration of B relative to accelerating block A) 30° (b) Block A being pulled up my motor M (use rotated rectangular coordinate system) 20° (c) Ball at C, top of swing (use path coordinates) (d) Parasailer/Person (use polar coordinates)arrow_forwardwhere M1=0.41m, M2=1.8m, M3=0.56m, please use bernoulis equation where necessary and The solutions should include, but not be limited to, the equations used tosolve the problems, the charts used to solve the problems, detailed working,choice of variables, the control volume considered, justification anddiscussion of results etc.If determining the friction factor, the use of both Moody chart and empiricalequations should be used to verify the validity of the value.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





