Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 12P
To determine

Find the Fourier series of the given voltage source.

Expert Solution & Answer
Check Mark

Answer to Problem 12P

The Fourier series v(t) for the given voltage source is 80π2n=1480n2cosnt.

Explanation of Solution

Given data:

The voltage source of the periodic waveform is,

v(t)=120t(2πt)V, 0<t<2π

Formula used:

Write the expression to calculate the fundamental angular frequency.

ω0=2πT (1)

Here,

T is the period of the function.

Write the general expression to calculate trigonometric Fourier series of v(t).

v(t)=a0+n=1(ancosnω0t+bnsinnω0t) (2)

Here,

a0 is the dc component of z(t),

an and bn are the Fourier coefficients,

n is an integer, and

ω0 is the angular frequency.

Write the expression to calculate the dc component of the function v(t).

a0=1T0Tv(t)dt (3)

Write the expression to calculate Fourier coefficients.

an=2T0Tv(t)cosnω0tdt (4)

bn=2T0Tv(t)sinnω0tdt (5)

Calculation:

Given voltage source function is,

v(t)=120t(2πt)V=(240πt120t2)V

The time period of the given voltage source function is,

T=2π

Substitute 2π for T in equation (1) to find ω0.

ω0=2π2π=1

Substitute 2π for T in equation (3) to find a0.

a0=12π02πv(t)dt=12π02π(240πt120t2)dt=12π(02π240πtdt02π120t2dt)=12π(240π[t22]02π120[t33]02π)

Simplify the above equation to find a0.

a0=12π(120π[(2π)2(0)2]40[(2π)3(0)3])=12π(120π(4π2)40(8π3))=12π(480π3320π3)=80π2

Substitute 2π for T and 1 for ω0 in equation (4) to find an.

an=22π02πv(t)cosn(1)tdt=1π02πv(t)cosntdt=1π02π(240πt120t2)cosntdt=120π02π(2πtt2)cosntdt

Simplify the above equation to find an.

an=120π(02π2πtcosntdt02πt2cosntdt)

an=120π(2π02πtcosntdt02πt2cosntdt) (6)

Assume the following to reduce the equation (6).

x=02πtcosntdt (7)

y=02πt2cosntdt (8)

Substitute the equations (7) and (8) in equation (6) to find an.

an=120π(2πxy) (9)

Consider the following integration formula.

abudv=[uv]ababvdu (10)

Compare the equations (7) and (10) to simplify the equation (7).

u=t dv=cosntdtdu=dt v=sinntn

Using the equation (10), the equation (7) can be reduced as,

x=02πtcosntdt=[t(sinntn)]02π02π(sinntn)dt=1n[(2π)sinn(2π)(0)sinn(0)]1n02πsinntdt=1n[2πsin2nπ0]1n[cosntn]02π

Simplify the above equation to find x.

x=1n[2π(0)0]+1n2[cosn(2π)cosn(0)] {sin2nπ=0}=1n(0)+1n2[cos2nπcos0°]=0+1n2[11] {cos2nπ=1cos0°=1}=0

Compare the equations (8) and (10) to simplify the equation (8).

u=t2 dv=cosntdtdu=2tdt v=sinntn

Using the equation (10), the equation (8) can be reduced as,

y=02πt2cosntdt=[t2(sinntn)]02π02π(sinntn)(2tdt)=1n[t2sinnt]02π202π(sinntn)(tdt)=1n[(2π)2sinn(2π)(0)2sinn(0)]2n02πtsinntdt

Simplify the above equation to find y.

y=1n[4π2sin(2nπ)0]2n02πtsinntdt=1n[4π2(0)]2n02πtsinntdt {sin2nπ=0}=02n02πtsinntdt

y=2n02πtsinntdt (11)

Assume the following to reduce the equation (11).

z=02πtsinntdt (12)

Substitute the equation (12) in equation (11) to find y.

y=2nz (13)

Compare the equations (12) and (10) to simplify the equation (12).

u=t dv=sinntdtdu=dt v=cosntn

Using the equation (10), the equation (12) can be reduced as,

z=02πtsinntdt=[t(cosntn)]02π02π(cosntn)dt=1n[tcosnt]02π+1n02πcosntdt=1n[(2π)cosn(2π)(0)cosn(0)]+1n[sinntn]02π

Simplify the above equation to find z.

z=1n[(2π)cos(2nπ)0]+1n2[sinn(2π)sinn(0)]=1n[(2π)cos2nπ]+1n2[sin2nπsin0°]=1n[(2π)(1)]+1n2[00] {cos2nπ=1sin2nπ=0sin0°=0}=2πn

Substitute 2πn for z in equation (13) to find y.

y=2n(2πn)=4πn2

Substitute 0 for x and 4πn2 for y in equation (9) to find an.

an=120π(2π(0)4πn2)=120π(04πn2)=120π(4πn2)=480n2

Substitute 2π for T and 1 for ω0 in equation (5) to find bn.

bn=22π02πv(t)sinn(1)tdt=1π02πv(t)sinntdt=1π02π(240πt120t2)sinntdt=120π02π(2πtt2)sinntdt

Simplify the above equation to find bn.

bn=120π(02π2πtsinntdt02πt2sinntdt)

bn=120π(2π02πtsinntdt02πt2sinntdt) (14)

Assume the following to reduce the equation (14).

a=02πtsinntdt (15)

b=02πt2sinntdt (16)

Substitute the equations (15) and (16) in equation (14) to find bn.

bn=120π(2πab) (17)

Compare the equations (15) and (10) to simplify the equation (15).

u=t dv=sinntdtdu=dt v=cosntn

Using the equation (10), the equation (15) can be reduced as,

a=02πtsinntdt=[t(cosntn)]02π02π(cosntn)dt=1n[(2π)cosn(2π)(0)cosn(0)]+1n02πcosntdt=1n[2πcos2nπ0]+1n[sinntn]02π

Simplify the above equation to find a.

a=1n[2π(1)]+1n2[sinn(2π)sinn(0)] {cos2nπ=1}=2πn+1n2[sin2nπsin0°]=2πn+1n2[00] {sin2nπ=0sin0°=0}=2πn

Compare the equations (16) and (10) to simplify the equation (16).

u=t2 dv=sinntdtdu=2tdt v=cosntn

Using the equation (10), the equation (16) can be reduced as,

b=02πt2sinntdt=[t2(cosntn)]02π02π(cosntn)(2tdt)=1n[t2cosnt]02π+202π(cosntn)(tdt)=1n[(2π)2cosn(2π)(0)2cosn(0)]+2n02πtcosntdt

Simplify the above equation to find b.

b=1n[4π2cos(2nπ)0]+2n02πtcosntdt=1n[4π2(1)]+2n02πtcosntdt {cos2nπ=1}=1n(4π2)+2n02πtcosntdt

b=4π2n+2n02πtcosntdt (18)

Assume the following to reduce the equation (18).

c=02πtcosntdt (19)

Substitute the equation (19) in equation (18) to find b.

b=4π2n+2nc (20)

Compare the equations (19) and (10) to simplify the equation (19).

u=t dv=cosntdtdu=dt v=sinntn

Using the equation (10), the equation (19) can be reduced as,

c=02πtcosntdt=[t(sinntn)]02π02π(sinntn)dt=1n[tsinnt]02π1n02πsinntdt=1n[(2π)sinn(2π)(0)sinn(0)]1n[cosntn]02π

Simplify the above equation to find c.

c=1n[(2π)sin(2nπ)0]+1n2[cosn(2π)cosn(0)]=1n[2πsin(2nπ)]+1n2[cos(2nπ)cos0°]=1n[2π(0)]+1n2[11] {cos2nπ=1sin2nπ=0cos0°=1}=0

Substitute 0 for c in equation (20) to find b.

b=4π2n+2n(0)=4π2n+0=4π2n

Substitute 2πn for a and 4π2n for b in equation (17) to find bn.

bn=120π(2π(2πn)(4π2n))=120π(4π2n+4π2n)=120π(0)=0

Substitute 80π2 for a0, 480n2 for an, 0 for bn and 1 for ω0 in equation (2) to find v(t).

v(t)=80π2+n=1(480n2cosn(1)t+(0)sinn(1)t)=80π2+n=1(480n2cosnt+0)=80π2n=1480n2cosnt

Conclusion:

Thus, the Fourier series v(t) for the given voltage source is 80π2n=1480n2cosnt.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I'd like some help with this question please if possible, thanks
Fourier Expansions of Periodic Waveforms given in the Figures. Find it. Show on the amplitude-frequency axis. f=1/T 2nf=w a) b) f(t) T f(t) for -V T
I need the answer as soon as possible

Chapter 17 Solutions

Fundamentals of Electric Circuits

Ch. 17.6 - Obtain the complex Fourier series expansion of...Ch. 17.7 - Prob. 12PPCh. 17.8 - Rework Example 17.14 if the low-pass filter is...Ch. 17 - Which of the following cannot be a Fourier series?...Ch. 17 - If ft=t,0t,ft+n=ft, the value of 0 is (a) 1 (b) 2...Ch. 17 - Which of the following are even functions? (a) t +...Ch. 17 - Prob. 4RQCh. 17 - Prob. 5RQCh. 17 - If f(t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + ,...Ch. 17 - Prob. 7RQCh. 17 - The plot of |cn| versus n0 is called: (a) complex...Ch. 17 - Prob. 9RQCh. 17 - Prob. 10RQCh. 17 - Evaluate each of the following functions and see...Ch. 17 - Using MATLAB, synthesize the periodic waveform for...Ch. 17 - Given that Fourier coefficients a0, an, and bn of...Ch. 17 - Find the Fourier series expansion of the backward...Ch. 17 - Prob. 5PCh. 17 - Find the trigonometric Fourier series for f t =...Ch. 17 - Determine the Fourier series of the periodic...Ch. 17 - Using Fig. 17.51, design a problem to help other...Ch. 17 - Determine the Fourier coefficients an and bn of...Ch. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series for the...Ch. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Find the quadrature (cosine and sine) form of the...Ch. 17 - Express the Fourier series...Ch. 17 - The waveform in Fig. 17.55(a) has the following...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Obtain the Fourier series for the periodic...Ch. 17 - Prob. 20PCh. 17 - Prob. 21PCh. 17 - Calculate the Fourier coefficients for the...Ch. 17 - Using Fig. 17.61, design a problem to help other...Ch. 17 - Prob. 24PCh. 17 - Determine the Fourier series representation of the...Ch. 17 - Find the Fourier series representation of the...Ch. 17 - For the waveform shown in Fig. 17.65 below, (a)...Ch. 17 - Obtain the trigonometric Fourier series for the...Ch. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - If the periodic current waveform in Fig. 17.73(a)...Ch. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - The full-wave rectified sinusoidal voltage in Fig....Ch. 17 - Prob. 42PCh. 17 - The voltage across the terminals of a circuit is...Ch. 17 - Prob. 44PCh. 17 - A series RLC circuit has R = 10 , L = 2 mH, and C...Ch. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series expansion of...Ch. 17 - The Fourier series trigonometric representation of...Ch. 17 - Prob. 57PCh. 17 - Find the exponential Fourier series of a function...Ch. 17 - Prob. 59PCh. 17 - Obtain the complex Fourier coefficients of the...Ch. 17 - The spectra of the Fourier series of a function...Ch. 17 - Prob. 62PCh. 17 - Plot the amplitude spectrum for the signal f2(t)...Ch. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68PCh. 17 - Prob. 69PCh. 17 - Design a problem to help other students better...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77CPCh. 17 - Prob. 78CPCh. 17 - Consider the full-wave rectified sinusoidal...Ch. 17 - Prob. 82CP
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License