Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
6th Edition
ISBN: 9780078028229
Author: Charles K Alexander, Matthew Sadiku
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 17, Problem 12P
To determine

Find the Fourier series of the given voltage source.

Expert Solution & Answer
Check Mark

Answer to Problem 12P

The Fourier series v(t) for the given voltage source is 80π2n=1480n2cosnt.

Explanation of Solution

Given data:

The voltage source of the periodic waveform is,

v(t)=120t(2πt)V, 0<t<2π

Formula used:

Write the expression to calculate the fundamental angular frequency.

ω0=2πT (1)

Here,

T is the period of the function.

Write the general expression to calculate trigonometric Fourier series of v(t).

v(t)=a0+n=1(ancosnω0t+bnsinnω0t) (2)

Here,

a0 is the dc component of z(t),

an and bn are the Fourier coefficients,

n is an integer, and

ω0 is the angular frequency.

Write the expression to calculate the dc component of the function v(t).

a0=1T0Tv(t)dt (3)

Write the expression to calculate Fourier coefficients.

an=2T0Tv(t)cosnω0tdt (4)

bn=2T0Tv(t)sinnω0tdt (5)

Calculation:

Given voltage source function is,

v(t)=120t(2πt)V=(240πt120t2)V

The time period of the given voltage source function is,

T=2π

Substitute 2π for T in equation (1) to find ω0.

ω0=2π2π=1

Substitute 2π for T in equation (3) to find a0.

a0=12π02πv(t)dt=12π02π(240πt120t2)dt=12π(02π240πtdt02π120t2dt)=12π(240π[t22]02π120[t33]02π)

Simplify the above equation to find a0.

a0=12π(120π[(2π)2(0)2]40[(2π)3(0)3])=12π(120π(4π2)40(8π3))=12π(480π3320π3)=80π2

Substitute 2π for T and 1 for ω0 in equation (4) to find an.

an=22π02πv(t)cosn(1)tdt=1π02πv(t)cosntdt=1π02π(240πt120t2)cosntdt=120π02π(2πtt2)cosntdt

Simplify the above equation to find an.

an=120π(02π2πtcosntdt02πt2cosntdt)

an=120π(2π02πtcosntdt02πt2cosntdt) (6)

Assume the following to reduce the equation (6).

x=02πtcosntdt (7)

y=02πt2cosntdt (8)

Substitute the equations (7) and (8) in equation (6) to find an.

an=120π(2πxy) (9)

Consider the following integration formula.

abudv=[uv]ababvdu (10)

Compare the equations (7) and (10) to simplify the equation (7).

u=t dv=cosntdtdu=dt v=sinntn

Using the equation (10), the equation (7) can be reduced as,

x=02πtcosntdt=[t(sinntn)]02π02π(sinntn)dt=1n[(2π)sinn(2π)(0)sinn(0)]1n02πsinntdt=1n[2πsin2nπ0]1n[cosntn]02π

Simplify the above equation to find x.

x=1n[2π(0)0]+1n2[cosn(2π)cosn(0)] {sin2nπ=0}=1n(0)+1n2[cos2nπcos0°]=0+1n2[11] {cos2nπ=1cos0°=1}=0

Compare the equations (8) and (10) to simplify the equation (8).

u=t2 dv=cosntdtdu=2tdt v=sinntn

Using the equation (10), the equation (8) can be reduced as,

y=02πt2cosntdt=[t2(sinntn)]02π02π(sinntn)(2tdt)=1n[t2sinnt]02π202π(sinntn)(tdt)=1n[(2π)2sinn(2π)(0)2sinn(0)]2n02πtsinntdt

Simplify the above equation to find y.

y=1n[4π2sin(2nπ)0]2n02πtsinntdt=1n[4π2(0)]2n02πtsinntdt {sin2nπ=0}=02n02πtsinntdt

y=2n02πtsinntdt (11)

Assume the following to reduce the equation (11).

z=02πtsinntdt (12)

Substitute the equation (12) in equation (11) to find y.

y=2nz (13)

Compare the equations (12) and (10) to simplify the equation (12).

u=t dv=sinntdtdu=dt v=cosntn

Using the equation (10), the equation (12) can be reduced as,

z=02πtsinntdt=[t(cosntn)]02π02π(cosntn)dt=1n[tcosnt]02π+1n02πcosntdt=1n[(2π)cosn(2π)(0)cosn(0)]+1n[sinntn]02π

Simplify the above equation to find z.

z=1n[(2π)cos(2nπ)0]+1n2[sinn(2π)sinn(0)]=1n[(2π)cos2nπ]+1n2[sin2nπsin0°]=1n[(2π)(1)]+1n2[00] {cos2nπ=1sin2nπ=0sin0°=0}=2πn

Substitute 2πn for z in equation (13) to find y.

y=2n(2πn)=4πn2

Substitute 0 for x and 4πn2 for y in equation (9) to find an.

an=120π(2π(0)4πn2)=120π(04πn2)=120π(4πn2)=480n2

Substitute 2π for T and 1 for ω0 in equation (5) to find bn.

bn=22π02πv(t)sinn(1)tdt=1π02πv(t)sinntdt=1π02π(240πt120t2)sinntdt=120π02π(2πtt2)sinntdt

Simplify the above equation to find bn.

bn=120π(02π2πtsinntdt02πt2sinntdt)

bn=120π(2π02πtsinntdt02πt2sinntdt) (14)

Assume the following to reduce the equation (14).

a=02πtsinntdt (15)

b=02πt2sinntdt (16)

Substitute the equations (15) and (16) in equation (14) to find bn.

bn=120π(2πab) (17)

Compare the equations (15) and (10) to simplify the equation (15).

u=t dv=sinntdtdu=dt v=cosntn

Using the equation (10), the equation (15) can be reduced as,

a=02πtsinntdt=[t(cosntn)]02π02π(cosntn)dt=1n[(2π)cosn(2π)(0)cosn(0)]+1n02πcosntdt=1n[2πcos2nπ0]+1n[sinntn]02π

Simplify the above equation to find a.

a=1n[2π(1)]+1n2[sinn(2π)sinn(0)] {cos2nπ=1}=2πn+1n2[sin2nπsin0°]=2πn+1n2[00] {sin2nπ=0sin0°=0}=2πn

Compare the equations (16) and (10) to simplify the equation (16).

u=t2 dv=sinntdtdu=2tdt v=cosntn

Using the equation (10), the equation (16) can be reduced as,

b=02πt2sinntdt=[t2(cosntn)]02π02π(cosntn)(2tdt)=1n[t2cosnt]02π+202π(cosntn)(tdt)=1n[(2π)2cosn(2π)(0)2cosn(0)]+2n02πtcosntdt

Simplify the above equation to find b.

b=1n[4π2cos(2nπ)0]+2n02πtcosntdt=1n[4π2(1)]+2n02πtcosntdt {cos2nπ=1}=1n(4π2)+2n02πtcosntdt

b=4π2n+2n02πtcosntdt (18)

Assume the following to reduce the equation (18).

c=02πtcosntdt (19)

Substitute the equation (19) in equation (18) to find b.

b=4π2n+2nc (20)

Compare the equations (19) and (10) to simplify the equation (19).

u=t dv=cosntdtdu=dt v=sinntn

Using the equation (10), the equation (19) can be reduced as,

c=02πtcosntdt=[t(sinntn)]02π02π(sinntn)dt=1n[tsinnt]02π1n02πsinntdt=1n[(2π)sinn(2π)(0)sinn(0)]1n[cosntn]02π

Simplify the above equation to find c.

c=1n[(2π)sin(2nπ)0]+1n2[cosn(2π)cosn(0)]=1n[2πsin(2nπ)]+1n2[cos(2nπ)cos0°]=1n[2π(0)]+1n2[11] {cos2nπ=1sin2nπ=0cos0°=1}=0

Substitute 0 for c in equation (20) to find b.

b=4π2n+2n(0)=4π2n+0=4π2n

Substitute 2πn for a and 4π2n for b in equation (17) to find bn.

bn=120π(2π(2πn)(4π2n))=120π(4π2n+4π2n)=120π(0)=0

Substitute 80π2 for a0, 480n2 for an, 0 for bn and 1 for ω0 in equation (2) to find v(t).

v(t)=80π2+n=1(480n2cosn(1)t+(0)sinn(1)t)=80π2+n=1(480n2cosnt+0)=80π2n=1480n2cosnt

Conclusion:

Thus, the Fourier series v(t) for the given voltage source is 80π2n=1480n2cosnt.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
feedback and open-loop gains. R2 RI =B=S Vi name the circuit, derive and find the oscillation RA Ca Rx 000
5 Find the value of voltage Vy using nodal analysis (write and then solve the set of equations to get voltage Vx from your variables.) 43 LX + Vx да ww 1 23 дъх 83 38 ww
help on this question about block diagram reduction?

Chapter 17 Solutions

Fundamentals of Electric Circuits

Ch. 17.6 - Obtain the complex Fourier series expansion of...Ch. 17.7 - Prob. 12PPCh. 17.8 - Rework Example 17.14 if the low-pass filter is...Ch. 17 - Which of the following cannot be a Fourier series?...Ch. 17 - If ft=t,0t,ft+n=ft, the value of 0 is (a) 1 (b) 2...Ch. 17 - Which of the following are even functions? (a) t +...Ch. 17 - Prob. 4RQCh. 17 - Prob. 5RQCh. 17 - If f(t) = 10 + 8 cos t + 4 cos 3t + 2 cos 5t + ,...Ch. 17 - Prob. 7RQCh. 17 - The plot of |cn| versus n0 is called: (a) complex...Ch. 17 - Prob. 9RQCh. 17 - Prob. 10RQCh. 17 - Evaluate each of the following functions and see...Ch. 17 - Using MATLAB, synthesize the periodic waveform for...Ch. 17 - Given that Fourier coefficients a0, an, and bn of...Ch. 17 - Find the Fourier series expansion of the backward...Ch. 17 - Prob. 5PCh. 17 - Find the trigonometric Fourier series for f t =...Ch. 17 - Determine the Fourier series of the periodic...Ch. 17 - Using Fig. 17.51, design a problem to help other...Ch. 17 - Determine the Fourier coefficients an and bn of...Ch. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series for the...Ch. 17 - Prob. 12PCh. 17 - Prob. 13PCh. 17 - Find the quadrature (cosine and sine) form of the...Ch. 17 - Express the Fourier series...Ch. 17 - The waveform in Fig. 17.55(a) has the following...Ch. 17 - Prob. 17PCh. 17 - Prob. 18PCh. 17 - Obtain the Fourier series for the periodic...Ch. 17 - Prob. 20PCh. 17 - Prob. 21PCh. 17 - Calculate the Fourier coefficients for the...Ch. 17 - Using Fig. 17.61, design a problem to help other...Ch. 17 - Prob. 24PCh. 17 - Determine the Fourier series representation of the...Ch. 17 - Find the Fourier series representation of the...Ch. 17 - For the waveform shown in Fig. 17.65 below, (a)...Ch. 17 - Obtain the trigonometric Fourier series for the...Ch. 17 - Prob. 29PCh. 17 - Prob. 30PCh. 17 - Prob. 31PCh. 17 - Prob. 32PCh. 17 - Prob. 33PCh. 17 - Prob. 34PCh. 17 - Prob. 35PCh. 17 - Prob. 36PCh. 17 - If the periodic current waveform in Fig. 17.73(a)...Ch. 17 - Prob. 38PCh. 17 - Prob. 39PCh. 17 - The full-wave rectified sinusoidal voltage in Fig....Ch. 17 - Prob. 42PCh. 17 - The voltage across the terminals of a circuit is...Ch. 17 - Prob. 44PCh. 17 - A series RLC circuit has R = 10 , L = 2 mH, and C...Ch. 17 - Prob. 46PCh. 17 - Prob. 47PCh. 17 - Prob. 48PCh. 17 - Prob. 49PCh. 17 - Prob. 50PCh. 17 - Prob. 51PCh. 17 - Prob. 52PCh. 17 - Prob. 53PCh. 17 - Find the exponential Fourier series for the...Ch. 17 - Obtain the exponential Fourier series expansion of...Ch. 17 - The Fourier series trigonometric representation of...Ch. 17 - Prob. 57PCh. 17 - Find the exponential Fourier series of a function...Ch. 17 - Prob. 59PCh. 17 - Obtain the complex Fourier coefficients of the...Ch. 17 - The spectra of the Fourier series of a function...Ch. 17 - Prob. 62PCh. 17 - Plot the amplitude spectrum for the signal f2(t)...Ch. 17 - Prob. 64PCh. 17 - Prob. 65PCh. 17 - Prob. 66PCh. 17 - Prob. 67PCh. 17 - Prob. 68PCh. 17 - Prob. 69PCh. 17 - Design a problem to help other students better...Ch. 17 - Prob. 71PCh. 17 - Prob. 72PCh. 17 - Prob. 73PCh. 17 - Prob. 74PCh. 17 - Prob. 75PCh. 17 - Prob. 76PCh. 17 - Prob. 77CPCh. 17 - Prob. 78CPCh. 17 - Consider the full-wave rectified sinusoidal...Ch. 17 - Prob. 82CP
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Intro to FOURIER SERIES: The Big Idea; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=wmCIrpLBFds;License: Standard Youtube License