EBK FOUNDATIONS OF COLLEGE CHEMISTRY
15th Edition
ISBN: 9781118930144
Author: Willard
Publisher: JOHN WILEY+SONS INC.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16.7, Problem 16.15P
Interpretation Introduction
Interpretation:
Concentration of
Concept Introduction:
Addition of similar type of ion in partially soluble salt is termed as common ion effect. The common ion present in it decides the shift of equilibrium according to Le Chatelier’s principle. According to this principle with increase in concentration of reactants reaction moves towards forward direction thus this increases concentration of products. Whereas with increase in concentration of product reaction shifts towards reverse direction. This increases the concentration of reactants.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An aqueous solution contains 0.28 M hydrofluoric acid.
One Liter of this solution could be converted into a buffer by the addition of:
(Assume that the volume remains constant as each substance is added.)
O 0.139 mol NaOH
0.28 mol NaNO,
0.14 mol HNO,
0.29 mol HNO3
O 0.29 mol NaF
The solubility product for silver (I) bromide is 7.7 × 10–13. Calculate the molar solubility of silver (I) bromide.
An aqueous solution contains 0.30 M ammonium perchlorate.
One liter of this solution could be converted into a buffer by the addition of:
(Assume that the volume remains constant as each substance is added.)
O 0.30 mol HI
0.14 mol HI
O 0.29 mol NH3
0 0.14 mol NaOH
O 0.29 mol Ba(CIO,)2
Chapter 16 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
Ch. 16.1 - Prob. 16.1PCh. 16.2 - Prob. 16.2PCh. 16.3 - Prob. 16.3PCh. 16.3 - Prob. 16.4PCh. 16.3 - Prob. 16.5PCh. 16.3 - Prob. 16.6PCh. 16.4 - Prob. 16.7PCh. 16.4 - Prob. 16.8PCh. 16.5 - Prob. 16.9PCh. 16.5 - Prob. 16.10P
Ch. 16.6 - Prob. 16.11PCh. 16.6 - Prob. 16.12PCh. 16.7 - Prob. 16.13PCh. 16.7 - Prob. 16.14PCh. 16.7 - Prob. 16.15PCh. 16.8 - Prob. 16.16PCh. 16 - Prob. 1RQCh. 16 - Prob. 2RQCh. 16 - Prob. 3RQCh. 16 - Prob. 4RQCh. 16 - Prob. 5RQCh. 16 - Prob. 6RQCh. 16 - Prob. 7RQCh. 16 - Prob. 8RQCh. 16 - Prob. 9RQCh. 16 - Prob. 10RQCh. 16 - Prob. 11RQCh. 16 - Prob. 12RQCh. 16 - Prob. 13RQCh. 16 - Prob. 14RQCh. 16 - Prob. 15RQCh. 16 - Prob. 16RQCh. 16 - Prob. 17RQCh. 16 - Prob. 18RQCh. 16 - Prob. 19RQCh. 16 - Prob. 20RQCh. 16 - Prob. 21RQCh. 16 - Prob. 22RQCh. 16 - Prob. 23RQCh. 16 - Prob. 24RQCh. 16 - Prob. 25RQCh. 16 - Prob. 26RQCh. 16 - Prob. 27RQCh. 16 - Prob. 1PECh. 16 - Prob. 2PECh. 16 - Prob. 3PECh. 16 - Prob. 4PECh. 16 - Prob. 5PECh. 16 - Prob. 6PECh. 16 - Prob. 7PECh. 16 - Prob. 8PECh. 16 - Prob. 9PECh. 16 - Prob. 10PECh. 16 - Prob. 11PECh. 16 - Prob. 12PECh. 16 - Prob. 13PECh. 16 - Prob. 14PECh. 16 - Prob. 15PECh. 16 - Prob. 16PECh. 16 - Prob. 17PECh. 16 - Prob. 18PECh. 16 - Prob. 19PECh. 16 - Prob. 20PECh. 16 - Prob. 21PECh. 16 - Prob. 22PECh. 16 - Prob. 23PECh. 16 - Prob. 24PECh. 16 - Prob. 25PECh. 16 - Prob. 26PECh. 16 - Prob. 27PECh. 16 - Prob. 28PECh. 16 - Prob. 29PECh. 16 - Prob. 30PECh. 16 - Prob. 31PECh. 16 - Prob. 32PECh. 16 - Prob. 33PECh. 16 - Prob. 34PECh. 16 - Prob. 35PECh. 16 - Prob. 36PECh. 16 - Prob. 37PECh. 16 - Prob. 38PECh. 16 - Prob. 39PECh. 16 - Prob. 40PECh. 16 - Prob. 41PECh. 16 - Prob. 42PECh. 16 - Prob. 43PECh. 16 - Prob. 44PECh. 16 - Prob. 45PECh. 16 - Prob. 46PECh. 16 - Prob. 47PECh. 16 - Prob. 48PECh. 16 - Prob. 49AECh. 16 - Prob. 50AECh. 16 - Prob. 51AECh. 16 - Prob. 52AECh. 16 - Prob. 53AECh. 16 - Prob. 54AECh. 16 - Prob. 55AECh. 16 - Prob. 56AECh. 16 - Prob. 57AECh. 16 - Prob. 58AECh. 16 - Prob. 59AECh. 16 - Prob. 60AECh. 16 - Prob. 61AECh. 16 - Prob. 62AECh. 16 - Prob. 63AECh. 16 - Prob. 64AECh. 16 - Prob. 65AECh. 16 - Prob. 66AECh. 16 - Prob. 67AECh. 16 - Prob. 68AECh. 16 - Prob. 69AECh. 16 - Prob. 70AECh. 16 - Prob. 71AECh. 16 - Prob. 72AECh. 16 - Prob. 73AECh. 16 - Prob. 74AECh. 16 - Prob. 75AECh. 16 - Prob. 76AECh. 16 - Prob. 77AECh. 16 - Prob. 78AECh. 16 - Prob. 79AECh. 16 - Prob. 80AECh. 16 - Prob. 81AECh. 16 - Prob. 83AECh. 16 - Prob. 84AECh. 16 - Prob. 85AECh. 16 - Prob. 86CECh. 16 - Prob. 87CECh. 16 - Prob. 88CECh. 16 - Prob. 89CE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What must be the concentration of chromate ion in order to precipitate strontium chromate, SrCrO4, from a solution that is 0.0034 M Sr2+?arrow_forwardSome barium chloride is added to a solution that contains both K2SO4 (0.050 M) and Na3PO4 (0.020 M). (a) Which begins to precipitate first: the barium sulfate or the barium phosphate? (b) The concentration of the first anion species to precipitate, either the sulfate or phosphate, decreases as the precipitate forms. What is the concentration of the first species when the second begins to precipitate?arrow_forwardPhenol, C6H5OH, is a weak organic acid. Suppose 0.515 g of the compound is dissolved in enough water to make 125 mL of solution. The resulting solution is titrated with 0.123 M NaOH. C6H5OH(aq) + OH(aq) C6H5O(aq) + H2O() (a) What is the pH of the original solution of phenol? (b) What are the concentrations of all of the following ions at the equivalence point: Na+, H3O+, OH, and C6H5O? (c) What is the pH of the solution at the equivalence point?arrow_forward
- Does the pH of the solution increase, decrease, or stay the same when you (a) Add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015-M oxalic acid? (b) Add solid ammonium chloride to 100. mL of 0.016-M HCl? (c) Add 20.0 g NaCl to 1.0 L of 0.012-M sodium acetate, NaCH3COO?arrow_forwardConsider the nanoscale-level representations for Question 111 of the titration of the aqueous strong acid HA with aqueous NaOH, the titrant. Water molecules and Na+ ions are omitted for clarity. Which diagram corresponds to the situation: (a) After a very small volume of titrant has been added to the initial HA solution? (b) Halfway to the equivalence point? (c) When enough titrant has been added to take the solution just past the equivalence point? (d) At the equivalence point? Nanoscale representations for Question 111.arrow_forwardA solution is 1.5 104 M Zn2 and 0.20 M HSO4. The solution also contains Na2SO4. What should be the minimum molarity of Na2SO4 to prevent the precipitation of zinc sulfide when the solution is saturated with hydrogen sulfide (0.10 M H2S)?arrow_forward
- An aqueous solution contains 0.34 M potassium hypochlorite.One liter of this solution could be converted into a buffer by the addition of:(Assume that the volume remains constant as each substance is added.) More than one can be selected. 0.34 mol HNO3 0.33 mol KCl 0.17 mol NaOH 0.33 mol HClO 0.17 mol HNO3arrow_forwardAn aqueous solution contains 0.26 M hypochlorous acid.One Liter of this solution could be converted into a buffer by the addition of:(Assume that the volume remains constant as each substance is added.) 0.130 mol KOH 0.26 mol NaClO4 0.27 mol NaClO 0.27 mol HBr 0.13 mol HBrarrow_forwardThe solubility constant of lead (II) hydroxide [Pb(OH)2] is 1.2 x 10-15. If 100.0 g of this compound is dissolved in water what is the concentration of [OH-] and [Pb2+]? If 0.100 M NaOH is added what is the concentration of [OH-] and [Pb2+]?arrow_forward
- 0.0500 M HF (Ka= 7.20 x 10–4) determine the equilibrium molar concentration of H3O+ and equilibrium molar concentration of HF (in 3 sig. figures).arrow_forwardAn aqueous solution contains 0.18 M ammonium nitrate.One liter of this solution could be converted into a buffer by the addition of:(Assume that the volume remains constant as each substance is added.) more than one can be selected. 0.08 mol HBr 0.18 mol HBr 0.17 mol NH3 0.17 mol Ba(NO3)2 0.04 mol Ba(OH)2arrow_forwardAn aqueous solution contains 0.18 M ammonium chloride. One liter of this solution could be converted into a buffer by the addition of: (Assume that the volume remains constant as each substance is added.) O 0.04 mol Ba(OH)2 O 0.08 mol HCIO4 O 0.18 mol HClO4 O 0.17 mol BaCl2 O 0.17 mol NH3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY