Concept explainers
Interpretation:
Moles of
Concept Introduction:
Concentration of solution is expressed in terms of molarity. It is the ratio of moles of solute to the volume of solution in litres. The expression used to determine the concentration of solution is as follows:
Equilibrium constant used for the partially soluble salt in water is termed as solubility product constant
The expression for
Generally the concentration of solid is taken as constant. Therefore the expression for
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
EBK FOUNDATIONS OF COLLEGE CHEMISTRY
- You place 1.234 g of solid Ca(OH)2 in 1.00 L of pure water at 25 C. The pH of the solution is found to be 12.68. Estimate the value of Ksp for Ca(OH)2.arrow_forwardFor which salt in each of the following groups will the solubility depend on pH? a. AgF, AgCl, AgBr b. Pb(OH)2, PbCl2 c. Sr(NO3)2, Sr(NO2)2 d. Ni(N03)2, Ni(CN)2arrow_forwardWhen 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent. TlBr(s)Tl+(aq)+Br(aq) The thallium(I) and bromide ions in equilibrium with TlBr each have a concentration of 1.9 103 M. What is the value of Ksp for TlBr?arrow_forward
- The concentration of Mg2+ in seawater is 0.052 M. At what pH will 99% of the Mg2+ be precipitated as the hydroxide salt? [Ksp for Mg(OH)2 = 8.9 1012.]arrow_forward12.109 Copper(II) iodate has a solubility of 0.136 g per 100 g of water. Calculate its molar solubility in water and its Ksp.arrow_forwardA student dissolved a compound in water and added hydrochloric acid. No precipitate formed. Next she bubbled H2S into this solution, but again no precipitate formed. However, when she made the solution basic with ammonia and bubbled in H2S, a precipitate formed. Which of the following are possible as the cation in the compound? a Ag+ b Ca2+ c Mn2+ d Cd2arrow_forward
- What must be the concentration of chromate ion in order to precipitate strontium chromate, SrCrO4, from a solution that is 0.0034 M Sr2+?arrow_forwardThe solubility of Mg(OH)2 in water is approximately 9.6 mg/L at a given temperature. Calculate the Ksp of magnesium hydroxide. Calculate the hydroxide concentration needed to precipitate Mg2+ ions such that no more than 5.0 μg Mg2+ per liter remains in the solution.arrow_forwardSufficient sodium cyanide, NaCN, was added to 0.015 M silver nitrate, AgNO3, to give a solution that was initially 0.108 M in cyanide ion, CN. What is the concentration of silver ion, Ag+, in this solution after Ag(CN)2 forms? The formation constant Kf for the complex ion Ag(CN)2 is 5.6 1018.arrow_forward
- Calculate the cadmium ion concentration, [Cd2+], in a solution prepared by mixing 0.100 L of 0.0100 M Cd(NO3)2 with 1.150 L of 0.100 NH3(aq).arrow_forwardWrite the ionic equation for the dissolution and the Ksp expression for each of the following slightly soluble ionic compounds: (a) LaF3. (b) CaCO3. (c) Ag2SO4. (d) Pb(OH)2arrow_forwardA 1.0-L solution that is 4.2 M in ammonia is mixed with 26.7 g of ammonium chloride. a What is the hydroxide-ion concentration of this solution? b 0.075 mol of MgCl2 is added to the above solution. Assume that there is no volume change. After Mg(OH)2 has precipitated, what is the molar concentration of magnesium ion? What percent of the Mg2+ is removed from solution?arrow_forward
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning