
Concept explainers
Two rotating rods in the vertical plane are connected by a slider block P of negligible mass. The rod attached at A has a weight of 1.6 1b and a length of 8 in. Rod BP weighs 2 lb and is 10 in. long and the friction between block P and AE is negligible. The motion of the system is controlled by a couple M applied to rod BP. Knowing that rod BP has a constant angular velocity of 20 rad/s clockwise, determine (a) the couple M, (b) the components of the force exerted on AE by block P.

(a)
Find a couple of M.
Answer to Problem 16.141P
The couple of M=5.82Ib.in
Explanation of Solution
Given information:
The attached rod A weight is=1.6Lb
And length is=8in.
Rod BP weighs=2Lb
Length is=10in.
Explanation:
First consider the unit vector along the axis of X and Y direction.
So, we have to find the vertical distance from point P and point A(y).
Determine the horizontal distance from point A to B(X)
Here we take the coordinate points as (0,-0.4166ft)
Then the position of the vector
Coordinate points of the point P with the point B is (-0.7216ft,-0.4166ft)
Then the position vector is
Then the coordinate points with the point P and point E as (0,-8/12ft)
Position vector is
Here, the unit vector k as angular direction in clock wise as negative and it is positive when counter clockwise.
Angular velocity of the rod BP in vector form is,
Velocity of the rod BP is,
Formulate the velocity equation of point P
Compare the I terms from equation (1) And (2)
Compare the equation (1) and (2) for j terms
So, the angular acceleration is zero.
Formulate the acceleration of the rod BP
Find the acceleration of the point P to the point E
Formulate the acceleration at the point P
Substitute the above values
Based on equations (3) and (4), we get,
Find the mass of the rod AE
Then the moment of inertial of the rod AE is
Similarly find the mass of the rod BP
Then the moment of inertial of the rod BP is,
Here, the mass of the centers of rod AE and BP are to be considered as G and H
Then the reference for point G with point A as (0,-4/12ft).
Here, the position vector is −(0.3333ft)j.
Similarly, the point H with point B as the reference as (-0.7216ft,-0.4166ft) position vector is −(0.7216ft)i-(0.4166ft)j.
Acceleration of the point G is get by
Find the acceleration at point H
Considering the above diagram take the moment about point A
Based on above figure consider the moment about point B
Substitute the values
The magnitude of the couple applied on the rod is BP. It is considered as 5.82Ib.ft acts in a clockwise direction.

(b)
Find the force exerted on rod AE.
Answer to Problem 16.141P
The force exerted by rod AE is F=12.240Ib
Explanation of Solution
Considering the above diagram take the moment about point A
The force exerted by rod AE by block P is 12.240Ib. It is acted upon the left direction.
Want to see more full solutions like this?
Chapter 16 Solutions
Vector Mechanics for Engineers: Dynamics
- Problem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forward
- I need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





