Concept explainers
Solve Prob. 16.137 when θ = 90°.
16.137 In the engine system shown, l = 250 mm and b = 100 mm. The connecting rod BD is assumed to be a 1.2-kg uniform slender rod and is attached to the 1.8-kg piston P. During a test of the system, crank AB is made to rotate with a constant angular velocity of 600 rpm clockwise with no force applied to the face of the piston. Determine the forces exerted on the connecting rod at B and D when θ = 180°. (Neglect the effect of the weight of the rod.)
Fig. P16.137
The forces exerted on the connecting rod at B and D when
Answer to Problem 16.138P
The forces exerted on the connecting rod at B is
The forces exerted on the connecting rod at D is
Explanation of Solution
Given information:
The length of the rod BD is
The length of the rod AB is
The mass of the rod BD is
The mass of the piston P is
The angular velocity of AB is
Calculation:
Consider the acceleration due to gravity
Calculate the angular velocity in
Sketch the Free body Diagram of the system as shown in Figure 1.
Refer to Figure 1.
Calculate the distance
Substitute
Calculate the position vectors as shown below.
Position of B with respect to A.
Position of D with respect to B.
Position of mass center G with respect to D.
Calculate the velocity at B
Substitute
Calculate the velocity at D
Substitute
Resolving the i and j components as shown below.
For j component.
For i component.
Substitute
Consider that the angular acceleration as
Calculate the acceleration at B
Substitute
Calculate the acceleration
Substitute
Resolving i and j components as shown below.
For j component.
For i component.
Substitute
Calculate the acceleration of mass center G of bar BD
Substitute
Resolving the components as shown below.
Calculate the mass moment of inertia for BD
Substitute
Sketch the Free Body Diagram of the piston with the bar BD as shown in Figure 2.
Refer to Figure 2.
Apply the Equilibrium of forces along x direction as shown below.
Substitute
Apply the Equilibrium of moment about B as shown below.
Substitute
Apply the Equilibrium of forces along y direction as shown below.
Substitute
Calculate the force acting at B as shown below.
Substitute
Hence, the forces exerted on the connecting rod at B is
Sketch the Free Body Diagram of the piston as shown in Figure 3.
Refer to Figure 3.
Calculate the force acting on the rod at D as shown below.
Substitute
Calculate the magnitude of force at D as shown below.
Therefore, the forces exerted on the connecting rod at D is
Want to see more full solutions like this?
Chapter 16 Solutions
VECTOR MECH...,STAT.+DYNA.(LL)-W/ACCESS
Additional Engineering Textbook Solutions
Vector Mechanics For Engineers
Mechanics of Materials (10th Edition)
Thermodynamics: An Engineering Approach
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Web Development and Design Foundations with HTML5 (8th Edition)
Electric Circuits. (11th Edition)
- A piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the change in the volume of the cylinder of the refrigerant-134a if the specific volume and enthalpy of R-134a at the initial state of 90.4 kPa and -10°C and at the final state of 90.4 kPa and 15°C are as follows: = 0.2418 m³/kg, h₁ = 247.77 kJ/kg 3 v2 = 0.2670 m³/kg, and h₂ = 268.18 kJ/kg The change in the volume of the cylinder is marrow_forwardA piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the final pressure of the refrigerant-134a. The final pressure is kPa.arrow_forwardThe hydraulic cylinder BC exerts on member AB a force P directed along line BC. The force P must have a 560-N component perpendicular to member AB. A M 45° 30° C Determine the force component along line AB. The force component along line AB is N.arrow_forward
- ! Required information A telephone cable is clamped at A to the pole AB. The tension in the left-hand portion of the cable is given to be T₁ = 815 lb. A 15° 25° B T₂ Using trigonometry, determine the required tension T₂ in the right-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical. The required tension is lb.arrow_forwardWhat are examples of at least three (3) applications of tolerance fitting analysis.arrow_forwardThe primary material used in the production of glass products is silica sand. True or Falsearrow_forward
- Which one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forwardIn the lost foam process, the pattern doesn’t need to be removed from the mold. True or Falsearrow_forward
- Tempering eliminates internal stresses in glass. True or Falsearrow_forwardThermoset polymers can be recycled with little to no degradation in properties. True or Falsearrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY