University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem Q16.9DQ
Which has a more direct influence on the loudness of a sound wave: the displacement amplitude or the pressure amplitude? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
University Physics (14th Edition)
Ch. 16 - Prob. Q16.1DQCh. 16 - The hero of a western movie listens for an...Ch. 16 - Would you expect the pitch (or frequency) of an...Ch. 16 - In most modern wind instruments the pitch is...Ch. 16 - Symphonic musicians always warm up their wind...Ch. 16 - In a popular and amusing science demonstration, a...Ch. 16 - Prob. Q16.7DQCh. 16 - (a) Does a sound level of 0 dB mean that there is...Ch. 16 - Which has a more direct influence on the loudness...Ch. 16 - If the pressure amplitude of a sound wave is...
Ch. 16 - Does the sound intensity level obey the...Ch. 16 - A small fraction of the energy in a sound wave is...Ch. 16 - A small metal band is slipped onto one of the...Ch. 16 - An organist in a cathedral plays a loud chord and...Ch. 16 - Prob. Q16.15DQCh. 16 - Two vibrating tuning forks have identical...Ch. 16 - A large church has part of the organ in the front...Ch. 16 - A sound source and a listener are both at rest on...Ch. 16 - Can you think of circumstances in which a Doppler...Ch. 16 - Prob. Q16.20DQCh. 16 - If you wait at a railroad crossing as a train...Ch. 16 - In case 1, a source of sound approaches a...Ch. 16 - Does an aircraft make a sonic boom only at the...Ch. 16 - If you are riding in a supersonic aircraft, what...Ch. 16 - Prob. Q16.25DQCh. 16 - Example 16.1 (Section 16.1) showed that for sound...Ch. 16 - Prob. 16.2ECh. 16 - Consider a sound wave in air that has displacement...Ch. 16 - A loud factory machine produces sound having a...Ch. 16 - BIO Ultrasound and Infrasound. (a) Whale...Ch. 16 - (a) In a liquid with density 1300 kg/m3,...Ch. 16 - A submerged scuba diver hears the sound of a boat...Ch. 16 - Prob. 16.8ECh. 16 - An oscillator vibrating at 1250 Hz produces a...Ch. 16 - CALC (a) Show that the fractional change in the...Ch. 16 - A 60.0-m-long brass rod is struck at one end. A...Ch. 16 - Prob. 16.12ECh. 16 - BIO Energy Delivered to the Ear. Sound is detected...Ch. 16 - (a) By what factor must the sound intensity be...Ch. 16 - Eavesdropping! You are trying to overhear a juicy...Ch. 16 - BIO Human Hearing. A fan at a rock concert is 30 m...Ch. 16 - A sound wave in air at 20C has a frequency of 320...Ch. 16 - You live on a busy street, but as a music lover,...Ch. 16 - BIO For a person with normal hearing, the faintest...Ch. 16 - The intensity due to a number of independent sound...Ch. 16 - CP A babys mouth is 30 cm from her fathers ear and...Ch. 16 - The Sacramento City Council adopted a law to...Ch. 16 - CP At point A, 3.0 m from a small source of sound...Ch. 16 - (a) If two sounds differ by 5.00 dB, find the...Ch. 16 - Standing sound waves are produced in a pipe that...Ch. 16 - The fundamental frequency of a pipe that is open...Ch. 16 - Prob. 16.27ECh. 16 - BIO The Vocal Tract. Many opera singers (and some...Ch. 16 - The longest pipe found in most medium-size pipe...Ch. 16 - Singing in the Shower. A pipe closed at both ends...Ch. 16 - You blow across the open mouth of an empty test...Ch. 16 - Prob. 16.32ECh. 16 - A 75.0-cm-long wire of mass 5.625 g is tied at...Ch. 16 - Small speakers A and B are driven in phase at 725...Ch. 16 - Prob. 16.35ECh. 16 - Two loudspeakers, A and B (see Fig. E16.35), are...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two small stereo speakers are driven in step by...Ch. 16 - Two guitarists attempt to play the same note of...Ch. 16 - Prob. 16.41ECh. 16 - Adjusting Airplane Motors. The motors that drive...Ch. 16 - Two organ pipes, open at one end but closed at the...Ch. 16 - In Example 16.18 (Section 16.8), suppose the...Ch. 16 - On the planet Arrakis a male ornithoid is flying...Ch. 16 - A railroad train is traveling at 25.0 m/s in still...Ch. 16 - Two train whistles, A and B, each have a frequency...Ch. 16 - Moving Source vs. Moving Listener. (a) A sound...Ch. 16 - A swimming duck puddles the water with its feet...Ch. 16 - A railroad train is traveling at 30.0 m/s in still...Ch. 16 - A car alarm is emitting sound waves of frequency...Ch. 16 - While sitting in your car by the side of a country...Ch. 16 - Prob. 16.53ECh. 16 - The siren of a fire engine that is driving...Ch. 16 - A stationary police car emits a sound of frequency...Ch. 16 - How fast (as a percentage of light speed) would a...Ch. 16 - A jet plane flies overhead at Mach 1.70 and at a...Ch. 16 - The shock-wave cone created by a space shuttle at...Ch. 16 - A soprano and a bass are singing a duet. While the...Ch. 16 - CP The sound from a trumpet radiates uniformly in...Ch. 16 - Prob. 16.61PCh. 16 - CP A uniform 165-N bar is supported horizontally...Ch. 16 - An organ pipe has two successive harmonics with...Ch. 16 - Prob. 16.64PCh. 16 - Prob. 16.65PCh. 16 - A bat flies toward a wall, emitting a steady sound...Ch. 16 - The sound source of a ships sonar system operates...Ch. 16 - BIO Ultrasound in Medicine. A 2.00-MHZ sound wave...Ch. 16 - BIO Horseshoe bats (genus Rhinolophus) emit sounds...Ch. 16 - CP A police siren of frequency fsiren is attached...Ch. 16 - CP A turntable 1.50 m in diameter rotates at 75...Ch. 16 - DATA A long, closed cylindrical tank contains a...Ch. 16 - Prob. 16.73PCh. 16 - DATA Supernova! (a) Equation (16.30) can be...Ch. 16 - CALC Figure P16.75 shows the pressure fluctuation...Ch. 16 - CP Longitudinal Waves on a Spring. A long spring...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
Repeat the preceding problem, assuming the water is in a glass beaker with a mass of 0.200 kg, which in tum is ...
University Physics Volume 2
(II) Suppose you adjust your garden hose nozzle for a hard stream of water. You point the nozzle vertically upw...
Physics for Scientists and Engineers with Modern Physics
The speed of the person sitting on the chair relative to the chair and relative to Earth.
Conceptual Physics (12th Edition)
67. A person leaning over a 125-m-deep well accidentally drops a siren emitting sound of frequency 2500 Hz. Jus...
College Physics (10th Edition)
Which system (A–D) has the extrasolar planet that is easiest to detect from Earth? Explain your reasoning.
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sound wave in air has a pressure amplitude equal to 4.00 103 Pa. Calculate the displacement amplitude of the wave at a frequency of 10.0 kHz.arrow_forwardA harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardAn ambulance with a siren (f=1.00kHz) blaring is approaching an accident scene. The ambulance is moving at 70.00 mph. A nurse is approaching the scene from the opposite direction, running at vo=7.00 m/s. What frequency does the nurse observe? Assume the speed of sound is v=343.00 m/s.arrow_forward
- Review. A steel guitar string with a diameter of 1.00 mm is stretched between supports 80.0 cm apart. The temperature is 0.0C. (a) Find the mass per unit length of this siring. (Use the value 7.86 103 kg/m4 for the density.) (b) The fundamental frequency of transverse oscillations of the string is 200 Hz. What is the tension in the string? Next, the temperature is raised to 30.0C. Find the resulting values of (c) the tension and (d) the fundamental frequency. Assume both the Youngs modulus of 20.0 1010 N/m2 and the average coefficient of expansion = 11.0 10-6 (C)-1 have constant values between 0.0C and 30.0C.arrow_forwardA swimmer in the ocean observes one day that the ocean surface waves are periodic and resemble a sine wave. The swimmer estimates that the vertical distance between the crest and the trough of each wave is approximately 0.45 m, and the distance between each crest is approximately 1.8 m. The swimmer counts that 12 waves pass every two minutes. Determine the simple harmonic wave function that would describes these waves.arrow_forwardThe intensity of a sound wave at a fixed distance from a speaker vibrating at a frequency f is I. (a) Determine the intensity that results if the frequency is increased to f while a constant displacement amplitude is maintained. (b) Calculate the intensity if the frequency is reduced to f/2 and the displacement amplitude is doubled.arrow_forward
- A yellow submarine traveling horizontally at 11.0 m/s uses sonar with a frequency of 5.27 103 Hz. A red submarine is in front of the yellow submarine and moving 3.00 m/s relative to the water in the same direction. A crewman in the red submarine observes sound waves (pings) from the yellow submarine. Take the speed of sound in seawater as 1 533 m/s. (a) Write Equation 14.12. (b) Which submarine is the source of the sound? (c) Which submarine carries the observer? (d) Does the motion of the observers submarine increase or decrease the time between the pressure maxima of the incoming sound waves? How does that affect the observed period? The observed frequency? (e) Should the sign of v0 be positive or negative? (f) Does the motion of the source submarine increase or decrease the time observed between the pressure maxima? How does this motion affect the observed period? The observed frequency? (g) What sign should be chosen for vs? (h) Substitute the appropriate numbers and obtain the frequency observed by the crewman on the red submarine.arrow_forwardConsider the following wave function in SI units: P(r,t)=(25.0r)sin(1.36r2030t) Explain how this wave function can apply to a wave radiating from a small source, with r being the radial distance from the center of the source to any point outside the source. Give the most detailed description of the wave that you can. Include answers to such questions as the following and give representative values for any quantities that can be evaluated. (a) Does the wave move more toward the right or the left? (b) As it moves away from the source, what happens to its amplitude? (c) Its speed? (d) Its frequency? (e) Its wavelength? (f) Its power? (g) Its intensity?arrow_forwardA train whistle (f = 400 Hz) sounds higher or lower in frequency depending on whether it approaches or recedes. (a) Prove that the difference in frequency between the approaching and receding train whistle is f=2u/v1u2/v2f where u is the speed of the train and v is the speed of sound. (b) Calculate this difference for a train moving at a speed of 130 km/h. Take the speed of sound in air to be 340 m/s.arrow_forward
- An undersea earthquake or a landslide can produce an ocean wave of short duration carrying great energy, called a tsunami. When its wavelength is large compared to the ocean depth d, the speed of a water wave is given approximately by v=gd. Assume an earthquake occurs all along a tectonic plate boundary running north to south and produces a straight tsunami wave crest moving everywhere to the west. (a) What physical quantity can you consider to be constant in the motion of any one wave crest? (b) Explain why the amplitude of the wave increases as the wave approaches shore. (c) If the wave has amplitude 1.80 m when its speed is 200 m/s, what will be its amplitude where the water is 9.00 m deep? (d) Explain why the amplitude at the shore should be expected to be still greater, but cannot be meaningfully predicted by your model.arrow_forwardAs a certain sound wave travels through the air, it produces pressure variations (above anti below atmospheric pressure) given by P = 1.27 sin (x - 34t) in SI units. Find (a) the amplitude of the pressure variations. (b) the frequency, (c) the wavelength in air. and (d| the speed of the sound wave.arrow_forwardReview. A block of mass M = 0.450 kg is attached to one end of a cord of mass m = 0.003 20 kg: the other end of the cord is attached to a fixed point. the block rotates with constant angular speed = 10.0 rad/s in a circle on a frictionless, horizontal table as shown in Figure p16.55. What time interval is required for a transverse wave to travel along the string from the center of the circle to the block?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY