![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_largeCoverImage.gif)
Concept explainers
Consider the following wave function in SI units:
Explain how this wave function can apply to a wave
(a)
![Check Mark](/static/check-mark.png)
Whether the wave move toward right or the left.
Answer to Problem 54AP
The wave does not move toward right or the left while the wave moves outward equally in all directions.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Here,
If
The wave moves outward equally in all directions because of the negative sign in
Conclusion:
Therefore, the wave does not move toward right or the left while the wave moves outward equally in all directions
(b)
![Check Mark](/static/check-mark.png)
The effect on its amplitude as it moves away from the source.
Answer to Problem 54AP
The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Explanation of Solution
From equation (1), the given wave function is,
From equation (2), the standard form wave function for the standing wave is,
From equation (1) and (2), it is clear that the amplitude is inversely proportional to its distance from the center. The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Conclusion:
Therefore, the amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance
(c)
![Check Mark](/static/check-mark.png)
The effect on its speed as it moves away from the source.
Answer to Problem 54AP
The speed of the wave is constant as it moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the speed of the wave is,
Here,
Substitute
The calculated value of the speed of the wave is equal to the speed of the wave in the water at
Conclusion:
Therefore, the speed of the wave is constant as it moves away from the source.
(d)
![Check Mark](/static/check-mark.png)
The effect on its frequency as it moves away from the source.
Answer to Problem 54AP
The frequency of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the frequency of the wave is,
Here,
Substitute
The frequency of the wave is constant at
Conclusion:
Therefore, the frequency of the wave is constant as the wave moves away from the source.
(e)
![Check Mark](/static/check-mark.png)
The effect on its wavelength as it moves away from the source.
Answer to Problem 54AP
The wavelength of the wave is constant as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the wavelength of the wave is,
Here,
Substitute d
The wavelength of the wave is constant at
Conclusion:
Therefore, the wavelength of the wave is constant as the wave moves away from the source.
(f)
![Check Mark](/static/check-mark.png)
The effect of its power as it moves away from the source.
Answer to Problem 54AP
The power of the source and the net power of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the intensity of the wave is,
Here,
Substitute d
Formula to calculate the power of the source and the net power of the wave at all distance is,
Here,
Substitute
Thus, the power of the source and the net power of the wave at all distance will be same because the wave moves outward equally in all directions
Conclusion:
Therefore, the power of the source and the net power of the wave at all distance as the wave moves away from the source.
(e)
![Check Mark](/static/check-mark.png)
The effect of its intensity as it moves away from the source.
Answer to Problem 54AP
The intensity of the source and the intensity of the wave at all distance as wave moves away from the source.
Explanation of Solution
The given wave function is,
The standard form wave function for the standing wave is,
The intensity of the wave is,
The intensity of the wave follows the inverse square law at
Substitute
Thus, the intensity of the source and the intensity of the wave are same as the wave moves away from the source because the wave moves outward equally in all directions.
Conclusion:
Therefore, the intensity of the source and the intensity of the wave are same as the wave moves away from the source.
Want to see more full solutions like this?
Chapter 16 Solutions
Physics for Scientists and Engineers
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
General, Organic, and Biological Chemistry - 4th edition
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry: Structure and Properties (2nd Edition)
Chemistry: The Central Science (14th Edition)
Fundamentals Of Thermodynamics
- Children playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forwardNo chatgpt plsarrow_forward
- need help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forwardAn outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forward
- A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forward
- How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553292/9781337553292_smallCoverImage.gif)