Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
4th Edition
ISBN: 9780133942651
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 9CQ
FIGURE Q16.9 shows the wave fronts of a circular wave. What is the phase difference between (a) points A and B. (b) points C and D. and (C) points E and F?
FIGURE Q16.9
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q1. You wish to put a 1000 kg satellite into a circular orbit 300 km above the earth’s surface. The earth’s radius and mass are RE= 6.38 × 106m and mE= 5.97 × 1024kg. (a)Find the force on the satellite applied by the earth.(b)What speed, period, and centripetal acceleration will it have?
Q2. A sinusoidal wave is traveling on a string with a speed of 40 cm/s. The displacement of the particles of the string at x = 10 cm varies with time according toy = (5.0 cm) sin[1.0 − (4.0 s−1)t] The linear density of the string is 4.0 g/cm.(a)What is the tension in the string?(b)What are the frequency and the wavelength of the wave?
Q3. A solid cylinder of radius 10 cm and mass 12 kg starts from rest and rolls without slipping a distance L = 6.0 m down a roof that is inclined at the angle θ = 30◦ as shown in Figure. The roof's edge is at height H = 5.0 m from the ground. The moment of inertia of a solid cylinder through the centerof mass is Icm = 1/2 MR2, where M and R are the mass and…
WS19 (rev. 2.5)
Page 71
19.
Waves
Problems
1. The equation of a certain wave on a string is given by
y(x,t) = 0.1 sin{2r(x - 10t)}
with x and y in meters, andt in seconds.
Which way is the wave moving, to the left or to the right? How do you know?
(b) What is the wavelength of the wave? frequency? phase speed?
(c) If the string has a mass per unit length of 0.1 kg/m, what is the tension in the
string?
(d) What is the maximum transverse velocity of the string (that is, the maximum
vertical velocity of particles in the cord)?
[Ans: (b) 1 m; 10 Hz; 10 m/s; (c) 10 N; (d) 2n m/s]
(a)
bow do
V03
Chapter 16 Solutions
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Ch. 16 - Prob. 1CQCh. 16 - A wave pulse trath along a stretched string at a...Ch. 16 - FIGURE Q16.3 is a history graph showing the...Ch. 16 - FIGURE Q16.4 shows a snapshot graph and a history...Ch. 16 - Rank in order, from largest to smallest, the...Ch. 16 - A sound wave with wavelength ?0 and frequency...Ch. 16 - Prob. 7CQCh. 16 - FIGURE Q16.8 is a snapshot graph of a sinusoidal...Ch. 16 - FIGURE Q16.9 shows the wave fronts of a circular...Ch. 16 - Prob. 10CQ
Ch. 16 - One physics professor talking produces a sound...Ch. 16 - You are standing at x = 0 m, listening to a sound...Ch. 16 - The wave speed on a string under tension is 200...Ch. 16 - The wave speed on a string is 150 m/s when the...Ch. 16 - A 25 g string is under 20 N of tension. A pulse...Ch. 16 - Draw the history graph D(x = 4.0 m, t ) at x = 4.0...Ch. 16 - Prob. 5EAPCh. 16 - Draw the snapshot graph D (x, t = 0 s) at t = 0 s...Ch. 16 - Prob. 7EAPCh. 16 - Prob. 8EAPCh. 16 - Prob. 9EAPCh. 16 - A wave has angular frequency 30 rad/s and...Ch. 16 - A wave travels with speed 200 m/s. Its wave number...Ch. 16 - Prob. 12EAPCh. 16 - The displacement of a wave traveling in thee...Ch. 16 - What are the amplitude, frequency and wavelength...Ch. 16 -
15. Show that the displacement D(x, t) cx2 + dt2,...Ch. 16 - Show that the displacement D(x, t) = ln(ax + bt),...Ch. 16 - a. What is the wavelength of a 2.0 MHz ultrasound...Ch. 16 - Prob. 18EAPCh. 16 - Prob. 19EAPCh. 16 - Prob. 20EAPCh. 16 - Prob. 21EAPCh. 16 - Prob. 22EAPCh. 16 - 23. Cell phone conversations are transmitted by...Ch. 16 - a. How long does it take light to travel through a...Ch. 16 - A light wave has a 670 nm wavelength in air. Its...Ch. 16 - Prob. 26EAPCh. 16 - Prob. 27EAPCh. 16 - Prob. 28EAPCh. 16 - Prob. 29EAPCh. 16 - Prob. 30EAPCh. 16 - Prob. 31EAPCh. 16 - Prob. 32EAPCh. 16 - A sound wave with intensity 2.0 × l0-3 W/m2 is...Ch. 16 - Prob. 34EAPCh. 16 - Prob. 35EAPCh. 16 - During takeoff, the sound intensity level of a jet...Ch. 16 - 37. The sun emits electromagnetic waves with a...Ch. 16 - What are the sound intensity levels for sound...Ch. 16 - Prob. 39EAPCh. 16 - Prob. 40EAPCh. 16 - Prob. 41EAPCh. 16 - Prob. 42EAPCh. 16 - A bat locates insects by emitting ultrasonic...Ch. 16 - Prob. 44EAPCh. 16 - 45. I FIGURE P16.45 is a history graph at x = 0 m...Ch. 16 - . I FIGURE P16.46 is a snapshot graph at t=0sof a...Ch. 16 - Prob. 47EAPCh. 16 - Prob. 48EAPCh. 16 - Prob. 49EAPCh. 16 - A helium-neon laser beam has a wavelength in air...Ch. 16 - Earthquakes are essentially sound waves—called...Ch. 16 - Helium (density 0.18k/m ’ at 0C and 1 atm...Ch. 16 - Prob. 53EAPCh. 16 - 54. A sound wave is described by ,where y is in m...Ch. 16 - A wave on a string is described by...Ch. 16 - Prob. 56EAPCh. 16 - Prob. 57EAPCh. 16 - Prob. 58EAPCh. 16 - Prob. 59EAPCh. 16 - The string in FIGURE P16.60 has linear density ....Ch. 16 - A string that is under 50.0N of tension has linear...Ch. 16 - Prob. 62EAPCh. 16 - A sinusoidal wave travels along a stretched...Ch. 16 - Prob. 64EAPCh. 16 - Prob. 65EAPCh. 16 - An AM radio station broadcasts with a power of...Ch. 16 - Prob. 67EAPCh. 16 - The sound intensity 50m from a wailing tornado...Ch. 16 - Prob. 69EAPCh. 16 - 70. A compact sound source radiates of sound...Ch. 16 - Prob. 71EAPCh. 16 - Prob. 72EAPCh. 16 - Prob. 73EAPCh. 16 - Prob. 74EAPCh. 16 - Prob. 75EAPCh. 16 - Prob. 76EAPCh. 16 - Prob. 77EAPCh. 16 - A starship approaches its home planet at a speed...Ch. 16 - Prob. 79EAPCh. 16 - Prob. 80EAPCh. 16 - Prob. 81EAPCh. 16 - A roof mass m and length L hangs from a ceiling....Ch. 16 - A communications truck with a 44-cm-diameter dish...Ch. 16 - Prob. 84EAPCh. 16 - A water wave is a shallow-water wave if the water...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 5.00 kg is suspended from a wire that passes over a pulley and is attached to a wall (Fig. P17.71). Traveling waves are observed to have a speed of 33.0 m/s on the wire. a. What is the mass per unit length of the wire? b. What would the speed of waves on the wire be if the suspended mass were decreased to 2.50 kg? FIGURE P17.71arrow_forwardA sound wave is modeled with the wave function P=1.20Pasin(kx6.28104s1t) and the sound wave travels in air at a speed of v=343.00 m/s. (a) What is the wave number of the sound wave? (b) What is the value for P(3.00 m, 20.00 s)?arrow_forwardA physicist a1 a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.400 s. (a) How far away is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? (b) Calculate the distance to the explosion taking the speed of light into account. Note that this distance is negligibly greater.arrow_forward
- The displacement of the air molecules in sound wave is modeled with the wave function s(x,t)=5.00nmcos(91.54m1x3.14104s1t) . (a) What is the wave speed of the sound wave? (b) What is the maximum speed of the air molecules as they oscillate in simple harmonic motion? (c) What is the magnitude of the maximum acceleration of the air molecules as they oscillate in simple harmonic motion?arrow_forwardA standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardA string on the violin has a length of 23.00 cm and a mass of 0.900 grams. The tension in the string 850.00 N. The temperature in the room is TC=24.00C . The string is plucked and oscillates in the n=9 mode. (a) What is the speed of the wave on the string? (b) What is the wavelength of the sounding wave produced? (c) What is the frequency of the oscillating string? (d) What is the frequency of the sound produced? (e) What is the wavelength of the sound produced?arrow_forward
- The equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardConsider the following wave function in SI units: P(r,t)=(25.0r)sin(1.36r2030t) Explain how this wave function can apply to a wave radiating from a small source, with r being the radial distance from the center of the source to any point outside the source. Give the most detailed description of the wave that you can. Include answers to such questions as the following and give representative values for any quantities that can be evaluated. (a) Does the wave move more toward the right or the left? (b) As it moves away from the source, what happens to its amplitude? (c) Its speed? (d) Its frequency? (e) Its wavelength? (f) Its power? (g) Its intensity?arrow_forwardA wave is described by y = 0.020 0 sin (kx - t), where k = 2.11 rad/m, = 3.62 rad/s, x and y are in meters, and t is in seconds. Determine (a) (he amplitude, (b) the wavelength, (c) the frequency, and (d) the speed of the wave.arrow_forward
- A harmonic transverse wave function is given by y(x, t) = (0.850 m) sin (15.3x + 10.4t) where all values are in the appropriate SI units. a. What are the propagation speed and direction of the waves travel? b. What are the waves period and wavelength? c. What is the amplitude? d. If the amplitude is doubled, what happens to the speed of the wave?arrow_forwardA sinusoidal wave in a rope is described by the wave function y=0.20sin(0.75x+18t) where x and y are in meters and t is in seconds. The rope has a linear mass density of 0.250 kg/m. The tension in the rope is provided by an arrangement like the one illustrated in Figure P16.13. What is the mass of the suspended object?arrow_forward(a) At an air show a jet flies directly toward the stands at a speed of 1200 km/h, emitting a frequency of 3500 Hz, on a day when the speed of sound is 342 m/s. What frequency is received by the observers? (b) What frequency do they receive as the plane flies directly away from them?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License